Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm
Yu Ma1,2, Wei-Jiang Li1,2 Yun-Fei, Xu1,2, Jun-Qi Liu1,2*, Ning Zhuo1,2*, Ke Yang1,2, Jin-Chuan Zhang1,2, Shen-Qiang Zhai1,2, Shu-Man Liu1,2, Li-Jun Wang1,2, and Feng-Qi Liu1,2
1Key Laboratory of Semiconductor Materials Science, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:We present optical frequency combs with a spectral emission of 48 cm$^{-1}$ and an output power of 420 mW based on a single-core quantum cascade laser at $\lambda \sim 8.7$ µm. A flat top spectrum sustains up to 130 comb modes delivering $\sim$ 3.2 mW of optical power per mode, making it a valuable tool for dual comb spectroscopy. The homogeneous gain medium, relying on a slightly diagonal bound-to-continuum structure, promises to provide a broad and stable gain for comb operating. Remarkably, the dispersion of this device is measured within 300 fs$^{2}$/mm to ensure stable comb operation over 90% of the total current range. The comb is observed with a narrow beatnote linewidth around 2 kHz and has weak dependence on the applied current for stable comb operation.
(Quantum well devices (quantum dots, quantum wires, etc.))
引用本文:
. [J]. 中国物理快报, 2023, 40(1): 14201-.
Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm. Chin. Phys. Lett., 2023, 40(1): 14201-.
Soibel A, Capasso F, Gmachl C, Peabody M L, Sergent A M, Paiella R, Hwang H Y, Sivco D L, Cho A Y, Liu H C, Jirauschek C, and Kartner F X 2004 IEEE J. Quantum Electron.40 844
[3]
Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, and Beck M 2016 Nanophotonics5 272
Lu Q Y, Razeghi M, Slivken S, Bandyopadhyay N, Bai Y, Zhou W J, Chen M, Heydari D, Haddadi A, McClintock R, Amanti M, and Sirtori C 2015 Appl. Phys. Lett.106 051105
Consolino L, Nafa M, De Regis M, Cappelli F, Garrasi K, Mezzapesa F P, Li L, Davies A G, Linfield E H, Vitiello M S, Bartalini S, and De Natale P 2020 Commun. Phys.3 69
[13]
Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, and Zeng H 2020 ACS Photon.7 49