Low-Voltage Depletion-Mode Indium-Tin-Oxide Thin-Film Transistors Gated by Ba0.4Sr 0.6TiO3 Dielectric
WANG Li-Ping, LU Ai-Xia, DOU Wei, WAN Qing
1Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 2Ningbo Institute of Material Technology and Engineering. Chinese Academy of Sciences, Ningbo 315201
Low-Voltage Depletion-Mode Indium-Tin-Oxide Thin-Film Transistors Gated by Ba0.4Sr 0.6TiO3 Dielectric
WANG Li-Ping, LU Ai-Xia, DOU Wei, WAN Qing
1Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 2Ningbo Institute of Material Technology and Engineering. Chinese Academy of Sciences, Ningbo 315201
We report on the fabrication and characterization of low-voltage indium-tin-oxide (ITO) thin-film transistors (TFTs) gated by Ba0.4Sr0.6TiO3 (BST) gate dielectric deposited at room temperature. The 400-nm-thick BST film shows a low leakage current density of 6× 10-8 A/cm2 and a high specific capacitance of 83 nF/cm2 (corresponding εr=37). The ITO TFTs gated by such BST dielectric operate in a depletion mode with an operation voltage of 5.0 V. The device exhibits a threshold voltage of -3.7 V, a subthreshold swing of 0.5 V/decade, a field effect mobility of 3.2 cm2/Vs and a current on/off ratio of 1.4× 104.
We report on the fabrication and characterization of low-voltage indium-tin-oxide (ITO) thin-film transistors (TFTs) gated by Ba0.4Sr0.6TiO3 (BST) gate dielectric deposited at room temperature. The 400-nm-thick BST film shows a low leakage current density of 6× 10-8 A/cm2 and a high specific capacitance of 83 nF/cm2 (corresponding εr=37). The ITO TFTs gated by such BST dielectric operate in a depletion mode with an operation voltage of 5.0 V. The device exhibits a threshold voltage of -3.7 V, a subthreshold swing of 0.5 V/decade, a field effect mobility of 3.2 cm2/Vs and a current on/off ratio of 1.4× 104.
[1] Kim J B et al 2009 Appl. Phys. Lett. 94 142107 [2] Kim K D and Song C K 2006 Appl. Phys. Lett. 88 233508 [3] Hu S G 2009 Chin. Phys. Lett. 26 017304 [4] Kim I D, Choi Y Wand Tuller H L 2005 Appl. Phys. Lett. 87 043509 [5] Lee K et al 2006 Appl. Phys. Lett. 89 133507 [6] Kim J B, Fuentes-Hernnandez C and Kippelen B 2008 Appl. Phys. Lett. 93 242111 [7] Su N C, Wang J S and Chin A 2009 IEEE Electron. Device Lett. 30 1317 [8] Wang G et al 2004 J. Appl. Phys. 95 316 [9] Yu A F et al 2009 Chin. Phys. Lett. 26 078501 [10] Kang K T et al 2005 Appl. Phys. Lett. 87 242908 [11] Lee J H et al 2006 Electrochem. Solid-State Lett. 9 G292 [12] Cosseddu P et al 2009 Adv. Mater. 21 344 [13] Lee C A et al 2006 Solid-State Electron. 50 1216 [14] Huang C, West J E and Katz H E 2006 Adv. Funct. Mater. 17 142 [15] Lu A X et al 2009 Appl. Phys. Lett. 95 222905 [16] Son Y D et al 2006 IEEE Trans. Electron. Devices 53 1260 [17] Zhang L et al 2009 Appl. Phys. Lett. 95 072112