1Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 2Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011 3University of Chinese Academy of Sciences, Beijing 100049
Abstract:We investigate the synergism effect of total ionizing dose (TID) on single-event burnout (SEB) for commercial enhancement-mode AlGaN/GaN high-electron mobility transistors. Our experimental results show that the slight degradation of devices caused by gamma rays can affect the stability of the devices during the impact of high energy particles. During heavy ion irradiation, the safe working values of drain voltage are significantly reduced for devices which have already been irradiated by $^{60}$Co gamma rays before. This could be attributed to more charges trapped caused by $^{60}$Co gamma rays, which make GaN devices more vulnerable to SEB. Moreover, the electrical parameters of GaN devices after $^{60}$Co gamma and heavy-ion irradiations are presented, such as the output characteristic curve, effective threshold voltages, and leakage current of drain. These results demonstrate that the synergistic effect of TID on SEB for GaN power devices does in fact exist.