1Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2University of Chinese Academy of Sciences, Beijing 100049
Abstract:A promising technology named epitaxy on nano-scale freestanding fin (ENFF) is firstly proposed for hetero-epitaxy. This technology can effectively release total strain energy and then can reduce the probability of generating mismatch dislocations. Based on the calculation, dislocation defects can be eliminated completely when the thickness of the Si freestanding fin is less than 10 nm for the epitaxial Ge layer. In addition, this proposed ENFF process can provide sufficient uniaxial stress for the epitaxy layer, which can be the major stressor for the SiGe or Ge channel fin field-effect transistor or nanowire at the 10 nm node and beyond. According to the results of technology computer-aided design simulation, nanowires integrated with ENFF show excellent electrical performance for uniaxial stress and band offset. The ENFF process is compatible with the state of the art mainstream technology, which has a good potential for future applications.
. [J]. 中国物理快报, 2017, 34(7): 78502-.
Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond. Chin. Phys. Lett., 2017, 34(7): 78502-.
Yeric G 2015 IEEE Int. Electron. Devices Meeting (Washington DC 7–9 December 2015) p 1.1.1
[2]
Guo D, Karve G, Tsutsui G, Lim K Y, Robison R, Hook T, Vega R, Liu D, Bedell S, Mochizuki S, Lie F, Akarvardar K, Wang M, Bao R, Burns S, Chan V, Cheng K, Demarest J, Fronheiser J, Hashemi P, Kelly J, Li J, Loubet N, Montanini P, Sahu B, Sankarapandian M, Sieg S, Sporre J, Strane J, Southwick R, Tripathi N, Venigalla R, Wang J, Watanabe K, Yeung C W, Gupta D, Doris B, Felix N, Jacob A, Jagannathan H, Kanakasabapathy S, Mo R, Narayanan V, Sadana D, Oldiges P, Stathis J, Yamashita T, Paruchuri V, Colburn M, Knorr A, Divakaruni R, Bu H and Khare M 2016 IEEE Symp. VLSI Technol. (Honolulu Hawaii 14–16 June 2016) p 1
[3]
Waldron N, Merckling C, Guo W, Ong P, Teugels L, Ansar S, Tsvetanova D, Sebaai F, Dorp D H v, Milenin A, Lin D, Nyns L, Mitard J, Pourghaderi A, Douhard B, Richard O, Bender H, Boccardi G, Caymax M, Heyns M, Vandervorst W, Barla K, Collaert N and Thean A V Y 2014 Symp. VLSI Technol. (Honolulu Hawaii 9–12 June 2014) p 1
[4]
An X, Huang R, Li Z, Yun Q, Lin M, Guo Y, Liu P, Li M and Zhang X 2015 Acta Phys. Sin.64 49 (in Chinese)
Vincent B, Damlencourt J F, Morand Y, Pouydebasque A, Le Royer C, Clavelier L, Dechoux N, Rivallin P, Nguyen T, Cristoloveanu S, Campidelli Y, Rouchon D, Mermoux M, Deleonibus S, Bensahel D and Billon T 2008 Mater. Sci. Semicond. Process.11 205
Eneman G, Brunco D P, Witters L, Vincent B, Favia P, Hikavyy A, Keersgieter A D, Mitard J, Loo R, Veloso A, Richard O, Bender H, Lee S H, Dal M V, Kabir N, Vandervorst W, Caymax M, Horiguchi N, Collaert N and Thean A 2012 Int. Electron. Devices Meeting (Washington DC 10–13 December 2012) p 6.5.1
[14]
Eneman G, Brunco D P, Witters L, Mitard J, Hikavyy A, Keersgieter A D, Roussel P J, Loo R, Veloso A, Horiguchi N, Collaert N and Thean A 2014 7th Int. Silicon-Germanium Technol. Device Meeting (Singapore 2–4 June 2014) p 9
[15]
Wang G, Abedin A, Moeen M, Kolahdouz M, Luo J, Guo Y, Chen T, Yin H, Zhu H, Li J, Zhao C and Radamson H H 2015 Solid-State Electron.103 222
[16]
Bijesh R, Ok I, Baykan M, Hobbs C, Majhi P, Jammy R and Datta S 2011 69th Device Res. Conf. (Santa Barbara California 20–22 June 2011) p 237
[17]
Wang G L, Moeen M, Abedin A, Kolahdouz M, Luo J, Qin C L, Zhu H L, Yan J, Yin H Z, Li J F, Zhao C and Radamson H H 2013 J. Appl. Phys.114 123511