Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors
He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu** , Shi-Jin Ding**
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433
Abstract :A capping layer for black phosphorus (BP) field-effect transistors (FETs) can provide effective isolation from the ambient air; however, this also brings inconvenience to the post-treatment for optimizing devices. We perform low-temperature hydrogenation on Al$_{2}$O$_{3}$ capped BP FETs. The hydrogenated BP devices exhibit a pronounced improvement of mobility from 69.6 to 107.7 cm$^{2}$v$^{-1}$s$^{-1}$, and a dramatic decrease of subthreshold swing from 8.4 to 2.6 V/dec. Furthermore, high/low frequency capacitance–voltage measurements suggest reduced interface defects in hydrogenated BP FETs. This could be due to the passivation of interface traps at both Al$_{2}$O$_{3}$/BP and BP/SiO$_{2}$ interfaces with hydrogen revealed by secondary ion mass spectroscopy.
收稿日期: 2018-08-20
出版日期: 2018-11-23
:
73.63.Bd
(Nanocrystalline materials)
73.22.-f
(Electronic structure of nanoscale materials and related systems)
85.30.Tv
(Field effect devices)
85.35.-p
(Nanoelectronic devices)
引用本文:
. [J]. 中国物理快报, 2018, 35(12): 127302-.
He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors. Chin. Phys. Lett., 2018, 35(12): 127302-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/12/127302
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I12/127302
[1] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 [2] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [3] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517 [4] Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227 [5] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292 [6] Li P, Zhang D, Liu J, Chang H, Sun Y and Yin N 2015 ACS Appl. Mater. Interfaces 7 24396 [7] Yasaei P, Behranginia A, Foroozan T, Asadi M, Kim K, Khaliliaraghi F and Salehikhojin A 2015 ACS Nano 9 9898 [8] Castellanosgomez A, Vicarelli L, Prada E et al 2014 2D Mater. 1 025001 [9] Wood J D, Wells S A, Jariwala D et al 2014 Nano Lett. 14 6964 [10] Doganov R A, O'Farrell E C T, Koenig S P et al 2015 Nat. Commun. 6 6647 [11] Zhu H, Mcdonnell S, Qin X et al 2015 ACS Appl. Mater. Interfaces 7 13038 [12] Illarionov Y Y, Waltl M, Rzepa G et al 2016 ACS Nano 10 9543 [13] Zhao Y, Wang H, Huang H et al 2016 Angew. Chem. 55 5003 [14] Luo X, Rahbarihagh Y, Hwang J C M et al 2014 IEEE Electron Device Lett. 35 1314 [15] Novoselov K S, Fal'Ko V I, Colombo L et al 2012 Nature 490 192 [16] Wu B B, Zheng H M, Ding Y Q et al 2017 Nanoscale Res. Lett. 12 282 [17] Castellanos-Gomez A, Buscema M, Molenaar R et al 2014 2D Mater. 1 011002 [18] Sze S M and Ng Kwok K 2007 Physics of Semiconductor Devices 3rd edn (Hoboken: John Wiley & Sons Inc) p 215 [19] Castagné R and Vapaille A 1971 Surf. Sci. 28 157 [20] Kozen A C, Schroeder M A, Osborn K D et al 2013 Appl. Phys. Lett. 102 173501
[1]
. [J]. 中国物理快报, 2020, 37(11): 118501-.
[2]
. [J]. 中国物理快报, 2020, 37(1): 17301-.
[3]
. [J]. 中国物理快报, 2019, 36(6): 67301-.
[4]
. [J]. 中国物理快报, 2019, 36(3): 37301-.
[5]
. [J]. 中国物理快报, 2018, 35(2): 27501-.
[6]
. [J]. 中国物理快报, 2016, 33(05): 56801-056801.
[7]
. [J]. 中国物理快报, 2015, 32(01): 17102-017102.
[8]
. [J]. 中国物理快报, 2013, 30(9): 97302-097302.
[9]
Majid. Farahmandjou. Synthesis of ITO Nanoparticles Prepared by the Degradation of Sulfide Method [J]. 中国物理快报, 2012, 29(7): 77306-077306.
[10]
ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method [J]. 中国物理快报, 2012, 29(6): 66301-066301.
[11]
LIU Zhao-Sen**;SechovskýVladimir;DiviMartin
. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model [J]. 中国物理快报, 2011, 28(6): 67302-067302.
[12]
HUANG Qing-Song;DONG Dong-Qing;XU Jian-Ping;ZHANG Xiao-Song;ZHANG Hong-Min;LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization [J]. 中国物理快报, 2010, 27(5): 57306-057306.
[13]
CHENG Jin;;ZOU Xiao-Ping;SONG Wei-Li;CAO Mao-Sheng;SU Yi;YANG Gang-Qiang;; Lü Xue-Ming;ZHANG Fu-Xue;. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction [J]. 中国物理快报, 2010, 27(5): 57302-057302.
[14]
SHAO Jia-Feng;A. G. U. Perera;P. V. V. Jayaweera;HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots [J]. 中国物理快报, 2010, 27(2): 27302-027302.
[15]
DONG Dong-Qing;LI Lan;ZHANG Xiao-Song;HAN Xu;AN Hai-Ping. Effect of Precursor Molar Ratio of [S2- ]/[Zn2+ ] on Particle Size and Photoluminescence of ZnS:Mn2+ Nanocrystals [J]. 中国物理快报, 2007, 24(9): 2661-2663.