摘要Electrical characteristics of In0.05Ga0.95N/Al0.07Ga0.93N and In0.05Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emitting diodes (UV-LEDs) at 400nm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.
Abstract:Electrical characteristics of In0.05Ga0.95N/Al0.07Ga0.93N and In0.05Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emitting diodes (UV-LEDs) at 400nm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.
[1] Sun W H, Zhang J P, Adivarahan V, Chitnis A, Shatalov M, Wu S,Mandavilli V, Yang J W and Khan M A 2004 Appl. Phys. Lett. 85 531 [2] Adivarahan V, Wu S, Zhang J P, Chitnis A, Shatalov M, Mandavilli V,Gaska R and Khan M A 2004 Appl. Phys. Lett. 84 4762 [3] Bilenko Y, Lunev A, Hu X H, Deng J Y, Katona T M, Zhang J P, GaskaR, Shur M S, Sun W H, Adivarahan V, Shatalov M and Khan A 2005 Jpn. J. Appl. Phys. 44 L98 [4] Chang S J, Kuo C H, Su Y K, Wu L W, Sheu J K, Wen T C, Lai W C,Chen J R and Tsai J M 2002 IEEE J. Select. Top. QuantumElectorn. 8 744 [5] Kamiyama S, Lwaya M, Takanami S, Terao S, Miyazaki A, Amano H,Akasaki I 2002 Phys. Status Solidi A 192 296 [6] Nishida T, Makimoto T, Saito H and Ban T 2004 Appl. Phys.Lett. 84 1002 [7] Kim K H, Fan Z Y, Khizar M, Nakarmi M L, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 4777 [8] Mayes K, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P andRazeghi M 2004 Appl. Phys. Lett. 84 1046 [9] Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J andWalker D 2002 IEEE Electron. Device Lett. 23 535 [10] Lee S W, Oh D C, Goto H, Ha J S, Lee H J, Hanada T, Cho M W, YaoT, Hong S K, Lee H Y, Cho S R, Choi J W, Cho J H i, Jang J H, Shin J Eand Lee J S 2006 Appl. Phys. Lett. 89 132117 [11] Cao X A, Teetsov J M, D'Evelyn M P, Merfeld D W and Yan C H 2004 Appl. Phys. Lett. 85 7 [12] Schubert E F 2003 Light-Emitting Diodes 1st edn(Cambridge: Cambridge University Press) vol 4 p 59 [13] Dumin D J and Pearson G L 1965 J. Appl. Phys. 36 3418 [14] Casey J H C, Krishnankutty M S and Zavada J M 1996 Appl.Phys. Lett. 68 2867 [15] Chitnis A, Kumar A, Shatalov M, Adivarahan V, Lunev A, Yang J W,Simin G, Khan M A, Gaska R and Shur M 2000 Appl. Phys. Lett. 77 3800 [16] Bandic Z Z, Bridger P M, Piquette E C and McGill T C 1998 Appl. Phys. Lett. 72 3166 [17] Riben A R and Feucht D L 1966 Solid State Electron. 91055 [18] Forrest S R, Didomernico Jr M. Smith R G and Stocker H J 1980 Appl. Phys. Lett. 36 580