Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)
Xi-xia Tao1 , Chun-lan Mo1,2** , Jun-lin Liu1,2 , Jian-li Zhang1,2 , Xiao-lan Wang1,2 , Xiao-ming Wu1,2 , Long-quan Xu1,2 , Jie Ding1,2 , Guang-xu Wang1,2 , Feng-yi Jiang1
1 National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 3300472 Nanchang Yellow Green Lighting Company Limited, Nanchang 330047
Abstract :A blue emission originated from InGaN/GaN superlattice (SL) interlayer is observed in the yellow LEDs with V-pits embedded in the quantum wells (QWs), revealing that sufficient holes have penetrated through the QWs into SLs far away from the p-type layer. In the V-pits embedded LEDs, hole transport has two paths: via the flat $c$-plane region or via the sidewalls of V-pits. It is proved that the holes in SLs are injected from the sidewalls of V-pits, and the transportation process is significantly affected by working temperature, current density, and the size of V-pits. Four motion possibilities are discussed when the holes flow via the sidewalls. All these may contribute to a better understanding of hole transport and device design.
收稿日期: 2018-01-29
出版日期: 2018-04-30
引用本文:
. [J]. 中国物理快报, 2018, 35(5): 57303-.
Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111). Chin. Phys. Lett., 2018, 35(5): 57303-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/5/057303
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I5/57303
[1] Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692 [2] Wu X M, Liu J L and Jiang F Y 2015 J. Appl. Phys. 118 164504 [3] Li C, Wu C, Hsu C, Lu C, Li H, Lu T and Wu Y 2016 AIP Adv. 6 55208 [4] Quan Z J, Liu J L, Fang F, Wang G X and Jiang F Y 2015 J. Appl. Phys. 118 193102 [5] Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402 [6] Han S, Lee D, Shim H, Wook Lee J, Kim D, Yoon S, Sun Kim Y and Kim S 2013 Appl. Phys. Lett. 102 251123 [7] Quan Z J, Wang L, Zheng C D, Liu J L and Jiang F Y 2014 J. Appl. Phys. 116 183107 [8] Li Y, Yun F, Su Y, Liu S, Ding W and Hou X 2014 Jpn. J. Appl. Phys. 53 112103 [9] Zhang J L, Liu J L, Pu Y, Fang W Q, Zhang M and Jiang F Y 2014 Chin. Phys. Lett. 31 037102 [10] Wang G X, Tao X X, Liu J L and Jiang F Y 2015 Semiconductor Sci. & Technol. 30 15018 [11] Wu X X, Liu J L, Quan Z J, Xiong C B, Zheng C D, Zhang J L, Mao Q H and Jiang F Y 2014 Appl. Phys. Lett. 104 221101 [12] Bremers H, Hoffmann L, Fuhrmann D, Rossow U, Hangleiter A and Netzel C 2007 Phys. Rev. B 76 155322 [13] Oh E, Park H and Park Y 1998 Appl. Phys. Lett. 72 70 [14] Wang X H, Jia H Q, Guo L W and Xing Z G 2007 Appl. Phys. Lett. 91 4056 [15] Jong-Il H A R H 2014 Appl. Phys. Express 7 71003 [16] Takashi M A M Y 1999 Jan. J. Appl. Phys. 38 3976 [17] Damilano B and Gil B 2015 J. Phys. D 48 [18] David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G and Krames M R 2008 Appl. Phys. Lett. 92 160 [19] Hager T, Binder N, Brüderl G, Eichler C, Avramescu A, Wurm T, Gomez-Iglesias A, Stojetz B, Tautz S, Galler B, Gerhard S, Zeisel R and Strauss U 2013 Appl. Phys. Lett. 102 231102 [20] Cheng Y, Liu J, Tian A, Zhang F, Feng M, Hu W, Zhang S, Ikeda M, Li D, Zhang L and Yang H 2016 Appl. Phys. Lett. 109 92104 [21] Zhang S, Xie E, Yan T, Yang W, Herrnsdof J, Gong Z, Watson I M, Gu E, Dawson M D and Hu X 2015 J. Appl. Phys. 118 125709 [22] Le L C, Zhao D G, Jiang D S, Li L, Wu L L, Chen P, Liu Z S, Li Z C, Fan Y M, Zhu J J, Wang H, Zhang S M and Yang H 2012 Appl. Phys. Lett. 101 252110 [23] Lee C, Chuo C, Dai J, Zheng X and Chyi J 2001 J. Appl. Phys. 89 6554 [24] Zhang Z, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W and Demir H V 2014 Appl. Phys. Lett. 105 153503 [25] Kim J, Ji M, Detchprohm T, Dupuis R D, Shervin S and Ryou J 2016 Phys. Status Solidi (a) 213 1296
[1]
. [J]. 中国物理快报, 2020, 37(3): 37301-.
[2]
. [J]. 中国物理快报, 2020, 37(2): 27301-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 27302-.
[4]
. [J]. 中国物理快报, 2019, 36(5): 57301-.
[5]
. [J]. 中国物理快报, 2019, 36(1): 17302-.
[6]
. [J]. 中国物理快报, 2018, 35(8): 87302-.
[7]
. [J]. 中国物理快报, 2018, 35(7): 77301-.
[8]
. [J]. 中国物理快报, 2018, 35(7): 78501-.
[9]
. [J]. 中国物理快报, 2018, 35(2): 27301-.
[10]
. [J]. 中国物理快报, 2017, 34(9): 97302-.
[11]
. [J]. 中国物理快报, 2017, 34(4): 47301-047301.
[12]
. [J]. 中国物理快报, 2017, 34(4): 47303-047303.
[13]
. [J]. 中国物理快报, 2017, 34(2): 27301-027301.
[14]
. [J]. 中国物理快报, 2016, 33(11): 117301-117301.
[15]
. [J]. 中国物理快报, 2016, 33(11): 117302-117302.