1Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 2School of Mechano-electronic Engineering, Xidian University, Xi'an 710071 3School of Computer Science and Technology, Xidian University, Xi'an 710071
Abstract:The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380 nm) are investigated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole–Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole–Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05 eV, 0.09 eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.