CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature-Dependent Anisotropy and Two-Band Superconductivity Revealed by Lower Critical Field in Organic Superconductor $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br |
Huijing Mu1, Jin Si1, Qingui Yang2, Ying Xiang1, Haipeng Yang2*, and Hai-Hu Wen1* |
1National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen 518060, China
|
|
Cite this article: |
Huijing Mu, Jin Si, Qingui Yang et al 2023 Chin. Phys. Lett. 40 067401 |
|
|
Abstract Resistivity and magnetization have been measured at different temperatures and magnetic fields in organic superconductors $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br. The lower critical field and upper critical field are determined, which allow to depict a complete phase diagram. Through the comparison between the upper critical fields with magnetic field perpendicular and parallel to the conducting $ac$-planes, and the scaling of the in-plane resistivity with field along different directions, we find that the anisotropy ${\varGamma}$ is strongly dependent on temperature. It is realized that ${\varGamma}$ is quite large (above 20) near $T_{\rm c}$, which satisfies the 2D model, but approaches a small value in the low-temperature region. The 2D-Tinkham model can also be used to fit the data at high temperatures. This is explained as a crossover from the orbital depairing mechanism in high-temperature and low-field region to the paramagnetic depairing mechanism in the high-field and low-temperature region. The temperature dependence of lower critical field, $H_{\rm c1} (T)$, shows a concave shape in wide temperature region. It is found that neither a single d-wave nor a single s-wave gap can fit the $H_{\rm c1} (T)$, however a two-gap model containing an s-wave and a d-wave can fit the data rather well, suggesting two-band superconductivity and an unconventional pairing mechanism in this organic superconductor.
|
|
Received: 15 April 2023
Published: 22 May 2023
|
|
PACS: |
74.72.-h
|
(Cuprate superconductors)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
|
|
|
[1] | Kino H and Fukuyama H 1996 J. Phys. Soc. Jpn. 65 2158 |
[2] | Buravov L I, Kushch N D, Merzhanov V A, Osherov M V, Khomenko A G, and Yagubskii E B 1992 J. Phys. I France 2 1257 |
[3] | Sato H, Sasaki T, and Toyota N 1991 Physica C 185 2679 |
[4] | Sasaki T, Yoneyama N, Matsuyama A, and Kobayashi N 2002 Phys. Rev. B 65 060505 |
[5] | Pinterić M, Tomić S, Prester M, Drobac D, and Maki K 2002 Phys. Rev. B 66 174521 |
[6] | Vulcanescu V, Lenoir C, Batail P, and Fruchter L 1995 Phys. Rev. B 52 471 |
[7] | Lang M, Steglich F, Toyota N, and Sasaki T 1994 Phys. Rev. B 49 15227 |
[8] | Schirber J E, Overmyer D L, Carlson K D, Williams J M, Kini A M, Wang H H, Charlier H A, Love B J, Watkins D M, and Yaconi G A 1991 Phys. Rev. B 44 4666 |
[9] | Wang H H, Geiser U, Williams J M, Carlson K D, Kini A M, Mason J M, Perry J T, Charlier H A, and Crouch A V S 1992 Chem. Mater. 4 247 |
[10] | Wang H H, Carlson K D, Geiser U, Kini A M, Schultz A J, Williams J M, Montgomery L, Kwok W K, Welp U, and Vandervoort K G 1991 Synth. Met. 42 1983 |
[11] | Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550 |
[12] | Larkin A and Ovchinnikov I 1965 Sov. Phys.-JETP 20 762 |
[13] | Singleton J, Symington J A, Nam M S, Ardavan A, Kurmoo M, and Day P 2000 J. Phys.: Condens. Matter 12 L641 |
[14] | Agosta C C, Jin J, Coniglio W A, Smith B E, Cho K, Stroe I, Martin C, Tozer S W, Murphy T P, Palm E C, Schlueter J A, and Kurmoo M 2012 Phys. Rev. B 85 214514 |
[15] | Fortune N A, Agosta C C, Hannahs S T, and Schleuter J A 2018 J. Phys.: Conf. Ser. 969 012072 |
[16] | Mayaffre H, Krämer S, Horvatić M, Berthier C, Miyagawa K, Kanoda K, and Mitrović V 2014 Nat. Phys. 10 928 |
[17] | Wosnitza J 2018 Ann. Phys. 530 1700282 |
[18] | Imajo S and Kindo K 2021 Crystals 11 1358 |
[19] | Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969 |
[20] | Mayaffre H, Wzietek P, Jérome D J, Lenoir C, and Batail P 1995 Phys. Rev. Lett. 75 4122 |
[21] | De Soto S M, Slichter C P, Kini A M, Wang H, Geiser U, and Williams J 1995 Phys. Rev. B 52 10364 |
[22] | Malone L, Taylor O J, Schlueter J A, and Carrington A 2010 Phys. Rev. B 82 014522 |
[23] | Ichimura K, Takami M, and Nomura K 2008 J. Phys. Soc. Jpn. 77 114707 |
[24] | Milbradt S, Bardin A A, Truncik C J S, Huttema W A, Jacko A C, Burn P L, Lo S C, Powell B J, and Broun D M 2013 Phys. Rev. B 88 064501 |
[25] | Izawa K, Yamaguchi H, Sasaki T, and Matsuda Y 2001 Phys. Rev. Lett. 88 027002 |
[26] | Elsinger H, Wosnitza J, Wanka S, Hagel J, Schweitzer D, and Strunz W 2000 Phys. Rev. Lett. 84 6098 |
[27] | Müller J, Lang M, Helfrich R, Steglich F, and Sasaki T 2002 Phys. Rev. B 65 140509 |
[28] | Zantout K, Altmeyer M, Backes S, and Valentí R 2018 Phys. Rev. B 97 014530 |
[29] | Guterding D, Diehl S, Altmeyer M, Methfessel T, Tutsch U, Schubert H, Lang M, JMüller J, Huth M, Jeschke H O, Valentí R, Jourdan M, and Elmers H J 2016 Phys. Rev. Lett. 116 237001 |
[30] | Pinterić M, Tomić S, and Maki K 2004 J. Phys. IV France 114 245 |
[31] | Singleton J and Mielke C 2002 Contemp. Phys. 43 63 |
[32] | Wosnitza J 2007 J. Low Temp. Phys. 146 641 |
[33] | Kini A M, Geiser U, Wang H H, Carlson K D, Williams J M, Kwok W K, Vandervoort K G, Thompson J E, and Stupka D L A 1990 Inorg. Chem. 29 2555 |
[34] | Wang H H, Kini A M, Montgomery L K, Geiser U, Carlson K D, Williams J M, Thompson J E, Watkins D M, and Kwok W K 1990 Chem. Mater. 2 482 |
[35] | Sano K, Sasaki T, Yoneyama N, and Kobayashi N 2010 Phys. Rev. Lett. 104 217003 |
[36] | Hartmann B, Müller J, and Sasaki T 2014 Phys. Rev. B 90 195150 |
[37] | Hartmann B, Zielke D, Polzin J, Sasaki T, and Müller J 2015 Phys. Rev. Lett. 114 216403 |
[38] | Stalcup T F, Brooks J S, and Haddon R C 1999 Phys. Rev. B 60 9309 |
[39] | Kamiya S, Shimojo Y, Tanatar M, Ishiguro T, Yamochi H, and Saito G 2002 Phys. Rev. B 65 134510 |
[40] | Kund M, Müller H, Biberacher W, Andres K, and Saito G 1993 Physica B 191 274 |
[41] | Watanabe Y, Sato H, Sasaki T, and Toyota N 1991 J. Phys. Soc. Jpn. 60 3608 |
[42] | Yu R C, Williams J, Wang H H, Thompson J E, Kini A M, Carlson K D, Ren J, Whangbo M H, and Chaikin P M 1991 Phys. Rev. B 44 6932 |
[43] | Strack C, Akinci C, Pashchenko V, Wolf B, Uhrig E, Assmus W, Lang M, Schreuer J, Wiehl L, and Schlueter J 2005 Phys. Rev. B 72 054511 |
[44] | Su X, Zuo F, Schlueter J A, Kelly M, and Williams J M 1998 Phys. Rev. B 57 R14056 |
[45] | Zuo F, Schlueter J A, and Williams J M 1999 Phys. Rev. B 60 574 |
[46] | Limelette P, Wzietek P, Florens S, Georges A, Costi T A, Pasquier C, Jerome D, Meziere C, and Batail P 2003 Phys. Rev. Lett. 91 016401 |
[47] | Brison J P, Keller N, Vernière A, Lejay P, Schmidt L, Buzdin A, Flouquet J, Julian S R, and Lonzarich G G 1995 Physica C 250 128 |
[48] | Blatter G, Geshkenbein V B, and Larkin A I 1992 Phys. Rev. Lett. 68 875 |
[49] | Welp U, Kwok W K, Crabtree G W, Vandervoort K G, and Liu J Z 1989 Phys. Rev. B 40 5263 |
[50] | Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill) |
[51] | Carrington A and Manzano F 2003 Physica C 385 205 |
[52] | Luo H G and Xiang T 2005 Phys. Rev. Lett. 94 027001 |
[53] | Singleton J 2001 Band Theory and Electronic Properties of Solids (Oxford: Oxford University Press) vol 2 |
[54] | Carrington A, Bonalde I J, Prozorov R, Giannetta R W, Kini A M, Schlueter J, Wang H H, Geiser U, and Williams J M 1999 Phys. Rev. Lett. 83 4172 |
[55] | Wakamatsu K, Miyagawa K, and Kanoda K 2020 Phys. Rev. Res. 2 043008 |
[56] | Tsuchiya S, Yamada J I, Terashima T, Kurita N, Kodama K, Sugii K, and Uji S 2013 J. Phys. Soc. Jpn. 82 064711 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|