CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe |
Sheng Ma1,2†, Shanshan Yan3†, Jiali Liu1,2, Yizhe Wang3, Yuhang Zhang1,2, Zhen Zhao1,2, Zouyouwei Lu1,2, Dong Li1, Yue Liu1,2, Jihu Lu1,2, Hua Zhang1,2,4, Haitao Yang1,2,5, Fang Zhou1,2,4, Zian, Li3*, Xiaoli Dong1,2,4*, and Zhongxian Zhao1,2,4 |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Physical Science and Technology, Guangxi University, Nanning 530004, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China 5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Sheng Ma, Shanshan Yan, Jiali Liu et al 2023 Chin. Phys. Lett. 40 067402 |
|
|
Abstract We report a hydrothermal route to remove interstitial excess Fe in non-superconducting iron chalcogenide Fe$_{1+\delta}$Se$_{1-x}$Te$_{x}$ single crystals. The extra-Fe-free ($\delta \sim 0$) FeSe$_{0.2}$Te$_{0.8}$ single crystal thus obtained shows bulk superconductivity at $T_{\rm c} \sim 13.8$ K, which is about 2 K higher than the FeSe$_{0.2}$Te$_{0.8}$ sample obtained by usual post-annealing process. The upper critical field $\mu_{0}H_{\rm c2}$ is estimated to be $\sim$ $42.5$ T, similar to the annealed FeSe$_{0.2}$Te$_{0.8}$. It is surprising to find that the hydrothermal FeSe$_{0.2}$Te$_{0.8}$ exhibits a remarkably small isothermal magnetization hysteresis loop at $T = 3$ K. This yields an extremely low critical current density $J_{\rm c} \sim 1.1\times 10^{2}$ A$\cdot$cm$^{-2}$ (over 100 times smaller than the annealed FeSe$_{0.2}$Te$_{0.8}$) and indicates more free vortices in the hydrothermal FeSe$_{0.2}$Te$_{0.8}$.
|
|
Received: 15 April 2023
Editors' Suggestion
Published: 23 May 2023
|
|
PACS: |
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
74.25.Sv
|
(Critical currents)
|
|
|
|
|
[1] | Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, and Mao Z Q 2008 Phys. Rev. B 78 224503 |
[2] | Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, and Pan S H 2015 Nat. Phys. 11 543 |
[3] | Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, and Gao H J 2018 Science 362 333 |
[4] | Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182 |
[5] | Zhao H, Li H, Dong L, Xu B, Schneeloch J, Zhong R, Fang M, Gu G, Harter J, Wilson S D, Wang Z, and Zeljkovic I 2021 Nat. Phys. 17 903 |
[6] | Hosono H, Yamamoto A, Hiramatsu H, and Ma Y 2018 Mater. Today 21 278 |
[7] | Si W D, Han S J, Shi X Y, Ehrlich S N, Jaroszynski J, Goyal A, and Li Q 2013 Nat. Commun. 4 1347 |
[8] | Liu X, Wei S, Shi Y, Liu F, Zhou C, Li Q, Li Y, Liu L, Shi Z, Ren L, Xu Y, Duan P, Yang Z, Ge J, Qi Y, Song Y, Liu H, Zhang Z, and Qin J 2022 Supercond. Sci. Technol. 35 10LT01 |
[9] | Lei H C, Hu R W, Choi E S, Warren J B, and Petrovic C 2010 Phys. Rev. B 81 094518 |
[10] | Bendele M, Babkevich P, Katrych S, Gvasaliya S N, Pomjakushina E, Conder K, Roessli B, Boothroyd A T, Khasanov R, and Keller H 2010 Phys. Rev. B 82 212504 |
[11] | Hu H F, Zuo J M, Wen J S, Xu Z J, Lin Z W, Li Q, Gu G D, Park W K, and Greene L H 2011 New J. Phys. 13 053031 |
[12] | Okazaki H, Watanabe T, Yamaguchi T, Kawasaki Y, Deguchi K, Demura S, Ozaki T, Denholme S J, Mizuguchi Y, Takeya H, and Takano Y 2012 J. Phys. Soc. Jpn. 81 113707 |
[13] | Dong L Y, Zhao H, Zeljkovic I, Wilson S D, and Harter J W 2019 Phys. Rev. Mater. 3 114801 |
[14] | Sun Y, Shi Z, and Tamegai T 2019 Supercond. Sci. Technol. 32 103001 |
[15] | Eguchi R, Senda M, Uesugi E, Goto H, Fujiwara A, Imai Y, Kimura S, Noji T, Koike Y, and Kubozono Y 2020 Mater. Res. Express 7 036001 |
[16] | Sun Y, Pan Y, Zhou N, Xing X, Shi Z, Wang J, Zhu Z, Sugimoto A, Ekino T, Tamegai T, and Kitano H 2021 Phys. Rev. B 103 224506 |
[17] | Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett. 102 247001 |
[18] | Liu T J, Ke X, Qian B, Hu J, Fobes D, Vehstedt E K, Pham H, Yang J H, Fang M H, Spinu L, Schiffer P, Liu Y, and Mao Z Q 2009 Phys. Rev. B 80 174509 |
[19] | Sales B C, Sefat A S, Mcguire M A, Jin R Y, Mandrus D, and Mozharivskyj Y 2009 Phys. Rev. B 79 094521 |
[20] | Komiya S, Hanawa M, Tsukada I, and Maeda A 2013 J. Phys. Soc. Jpn. 82 064710 |
[21] | Sun Y, Tsuchiya Y, Yamada T, Taen T, Pyon S, Shi Z, and Tamegai T 2013 J. Phys. Soc. Jpn. 82 093705 |
[22] | Dong C H, Wang H D, Li Z J, Chen J, Yuan H Q, and Fang M H 2011 Phys. Rev. B 84 224506 |
[23] | Hu J, Wang G C, Qian B, and Mao Z Q 2012 Supercond. Sci. Technol. 25 084011 |
[24] | Kawasaki Y, Deguchi K, Demura S, Watanabe T, Okazaki H, Ozaki T, Yamaguchi T, Takeya H, and Takano Y 2012 Solid State Commun. 152 1135 |
[25] | Koshika Y, Usui T, Adachi S, Watanabe T, Sakano K, Simayi S, and Yoshizawa M 2013 J. Phys. Soc. Jpn. 82 023703 |
[26] | Friederichs G M, Wörsching M P B, and Johrendt D 2015 Supercond. Sci. Technol. 28 095005 |
[27] | Otsuka T, Hagisawa S, Koshika Y, Adachi S, Usui T, Sasaki N, Sasaki S, Yamaguchi S, Nakanishi Y, Yoshizawa M, Kimura S, and Watanabe T 2019 Phys. Rev. B 99 184505 |
[28] | Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeš K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, and Broholm C 2010 Nat. Mater. 9 718 |
[29] | Liu Y, Kremer R K, and Lin C T 2010 Europhys. Lett. 92 57004 |
[30] | Hu J, Liu T J, Qian B, and Mao Z Q 2013 Phys. Rev. B 88 094505 |
[31] | Liu L, Mikami T, Takahashi M, Ishida S, Kakeshita T, Okazaki K, Fujimori A, and Uchida S 2015 Phys. Rev. B 91 134502 |
[32] | Yuan D N, Huang Y L, Ni S L, Zhou H X, Mao Y Y, Hu W, Yuan J, Jin K, Zhang G M, Dong X L, and Zhou F 2016 Chin. Phys. B 25 077404 |
[33] | Ni S L, Hu W, Shen P P, Wei Z G, Liu S B, Li D, Yuan J, Yu L, Jin K, Zhou F, Dong X L, and Zhao Z X 2019 Chin. Phys. B 28 127401 |
[34] | Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056 |
[35] | Li G, Zhu S, Fan P, Cao L, and Gao H J 2022 Chin. Phys. B 31 080301 |
[36] | De Mendonça B S, Manesco A L R, Sandler N, and Dias da Silva L G G V 2022 Phys. Rev. B 107 184509 |
[37] | Gurevich A 2003 Phys. Rev. B 67 184515 |
[38] | Bean C P 1964 Rev. Mod. Phys. 36 31 |
[39] | Gyorgy E M, van Dover R B, Jackson K A, Schneemeyer L F, and Waszczak J V 1989 Appl. Phys. Lett. 55 283 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|