Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 067301    DOI: 10.1088/0256-307X/40/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices
Ming-Li Liu1,2†, Dong Pan3†, Tian Le1, Jiang-Bo He1, Zhong-Mou Jia1,2, Shang Zhu1,2, Guang Yang1, Zhao-Zheng Lyu1, Guang-Tong Liu1,4, Jie Shen1,4, Jian-Hua Zhao3*, Li Lu1,2,4*, and Fan-Ming Qu1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Ming-Li Liu, Dong Pan, Tian Le et al  2023 Chin. Phys. Lett. 40 067301
Download: PDF(11399KB)   PDF(mobile)(13467KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Negative differential conductance (NDC) serves as a crucial characteristic that reveals various underlying physics and transport process in hybrid superconducting devices. We report the observation of gate-tunable NDC outside the superconducting energy gap on two types of hybrid semiconductor–superconductor devices, i.e., normal metal–superconducting nanowire–normal metal and normal metal–superconducting nanowire–superconductor devices. Specifically, we study the dependence of the NDCs on back-gate voltage and magnetic field. When the back-gate voltage decreases, these NDCs weaken and evolve into positive differential conductance dips; and meanwhile they move away from the superconducting gap towards high bias voltage, and disappear eventually. In addition, with the increase of magnetic field, the NDCs/dips follow the evolution of the superconducting gap, and disappear when the gap closes. We interpret these observations and reach a good agreement by combining the Blonder–Tinkham–Klapwijk (BTK) model and the critical supercurrent effect in the nanowire, which we call the BTK-supercurrent model. Our results provide an in-depth understanding of the tunneling transport in hybrid semiconductor–superconductor devices.
Received: 04 April 2023      Published: 19 May 2023
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  74.25.F- (Transport properties)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/067301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Li Liu
Dong Pan
Tian Le
Jiang-Bo He
Zhong-Mou Jia
Shang Zhu
Guang Yang
Zhao-Zheng Lyu
Guang-Tong Liu
Jie Shen
Jian-Hua Zhao
Li Lu
and Fan-Ming Qu
[1] Doh Y J, van Dam J A, Roest A L, Bakkers E P, Kouwenhoven L P, and De Franceschi S 2005 Science 309 272
[2] De Franceschi S, Kouwenhoven L, Schonenberger C, and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703
[3] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2012 Nano Lett. 12 6414
[4] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P, and Kouwenhoven L P 2012 Science 336 1003
[5] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, and Li X 2013 Phys. Rev. Lett. 110 126406
[6] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2014 Sci. Rep. 4 7261
[7] Lee E J H, Jiang X C, Houzet M, Aguado R, Lieber C M, and De Franceschi S 2014 Nat. Nanotechnol. 9 79
[8] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, and Marcus C M 2016 Science 354 1557
[9] Li S, Kang N, Caroff P, and Xu H Q 2017 Phys. Rev. B 95 014515
[10] Liu C X, Sau J D, Stanescu T D, and Das S S 2017 Phys. Rev. B 96 075161
[11] Deng M T, Vaitiekėnas S, Prada E, San-Jose P, Nygård J, Krogstrup P, Aguado R, and Marcus C M 2018 Phys. Rev. B 98 085125
[12] Sestoft J E, Kanne T, Gejl A N, von Soosten M, Yodh J S, Sherman D, Tarasinski B, Wimmer M, Johnson E, Deng M, Nygård J, Jespersen T S, Marcus C M, and Krogstrup P 2018 Phys. Rev. Mater. 2 044202
[13] Jünger C, Delagrange R, Chevallier D, Lehmann S, Dick K A, Thelander C, Klinovaja J, Loss D, Baumgartner A, and Schönenberger C 2020 Phys. Rev. Lett. 125 017701
[14] Nichele F, Portoles E, Fornieri A, Whiticar A M, Drachmann A C C, Gronin S, Wang T, Gardner G C, Thomas C, Hatke A T, Manfra M J, and Marcus C M 2020 Phys. Rev. Lett. 124 226801
[15] Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575
[16] Valentini M, Penaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, and Katsaros G 2021 Science 373 82
[17] Li L, Sun J H, Su W, Wang Z H, Xu D H, Luo H G, and Chen W Q 2021 Phys. Rev. B 103 125144
[18] Puglia D, Martinez E A, Ménard G C, Pöschl A, Gronin S, Gardner G C, Kallaher R, Manfra M J, Marcus C M, Higginbotham A P, and Casparis L 2021 Phys. Rev. B 103 235201
[19] Aghaee M, Akkala A, Alam Z et al. 2022 arXiv:2207.02472 [cond-mat.mes-hall]
[20] Zellekens P, Deacon R, Perla P, Grutzmacher D, Lepsa M I, Schapers T, and Ishibashi K 2022 Commun. Phys. 5 267
[21] Kitaev A Y 2001 Phys.-Usp. 44 131
[22] Lutchyn R M, Sau J D, and Das S S 2010 Phys. Rev. Lett. 105 077001
[23] Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[24] Sau J D, Lutchyn R M, Tewari S, and Das S S 2010 Phys. Rev. Lett. 104 040502
[25] Sau J D, Tewari S, Lutchyn R M, Stanescu T D, and Das S S 2010 Phys. Rev. B 82 214509
[26] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, and Oreg Y 2018 Nat. Rev. Mater. 3 52
[27] Eichler A, Weiss M, Oberholzer S, Schonenberger C, Levy Y A, Cuevas J C, and Martin-Rodero A 2007 Phys. Rev. Lett. 99 126602
[28] Grove-Rasmussen K, Jorgensen H I, Andersen B M, Paaske J, Jespersen T S, Nygard J, Flensberg K, and Lindelof P E 2009 Phys. Rev. B 79 134518
[29] Pillet J D, Quay C H L, Morfin P, Bena C, Yeyati A L, and Joyez P 2010 Nat. Phys. 6 965
[30] Andersen B M, Flensberg K, Koerting V, and Paaske J 2011 Phys. Rev. Lett. 107 256802
[31] Lee E J, Jiang X, Aguado R, Katsaros G, Lieber C M, and De Franceschi S 2012 Phys. Rev. Lett. 109 186802
[32] Kim B K, Ahn Y H, Kim J J, Choi M S, Bae M H, Kang K, Lim J S, Lopez R, and Kim N 2013 Phys. Rev. Lett. 110 076803
[33] He J B, Pan D, Yang G, Liu M L, Ying J H, Lyu Z, Fan J, Jing X N, Liu G T, Lu B, Liu D E, Zhao J H, Lu L, and Qu F M 2020 Phys. Rev. B 102 075121
[34] Su Z, Zarassi A, Hsu J F, San-Jose P, Prada E, Aguado R, Lee E J H, Gazibegovic S, Op H V R L M, Car D, Plissard S R, Hocevar M, Pendharkar M, Lee J S, Logan J A, Palmstrom C J, Bakkers E, and Frolov S M 2018 Phys. Rev. Lett. 121 127705
[35] Higginbotham A P, Albrecht S M, Kiršanskas G, Chang W, Kuemmeth F, Krogstrup P, Jespersen T S, Nygård J, Flensberg K, and Marcus C M 2015 Nat. Phys. 11 1017
[36] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, and Marcus C M 2016 Nature 531 206
[37] Shen J, Heedt S, Borsoi F, van Heck B, Gazibegovic S, Op H V R L M, Car D, Logan J A, Pendharkar M, Ramakers S J J, Wang G, Xu D, Bouman D, Geresdi A, Palmstrom C J, Bakkers E, and Kouwenhoven L P 2018 Nat. Commun. 9 4801
[38] Whiticar A M, Fornieri A, O'Farrell E C T, Drachmann A C C, Wang T, Thomas C, Gronin S, Kallaher R, Gardner G C, Manfra M J, Marcus C M, and Nichele F 2020 Nat. Commun. 11 3212
[39] Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, and Zhao J H 2022 Chin. Phys. Lett. 39 058101
[40] Valentini M, Borovkov M, Prada E, Marti-Sanchez S, Botifoll M, Hofmann A, Arbiol J, Aguado R, San-Jose P, and Katsaros G 2022 Nature 612 442
[41] Nicol J, Shapiro S, and Smith P H 1960 Phys. Rev. Lett. 5 461
[42] Giaever I 1960 Phys. Rev. Lett. 5 464
[43] Taylor B N 1968 J. Appl. Phys. 39 2490
[44] Shan L, Tao H J, Gao H, Li Z Z, Ren Z A, Che G C, and Wen H H 2003 Phys. Rev. B 68 144510
[45] Sheet G, Mukhopadhyay S, and Raychaudhuri P 2004 Phys. Rev. B 69 134507
[46] Dvoranová M, Plecenik T, Moško M, Vidiš M, Gregor M, Roch T, Grančič B, Satrapinskyy L, Kúš P, and Plecenik A 2018 AIP Adv. 8 125217
[47] He G, Wei Z X, Brisbois J, Jia Y L, Huang Y L, Zhou H X, Ni S L, Silhanek A V, Shan L, Zhu B Y, Yuan J, Dong X L, Zhou F, Zhao Z X, and Jin K 2018 Chin. Phys. B 27 047403
[48] Romano P, Avitabile F, Nigro A, Grimaldi G, Leo A, Shu L, Zhang J, Di Bartolomeo A, and Giubileo F 2020 Nanomaterials 10 1810
[49] Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N, and Shan L 2020 Phys. Rev. B 102 085139
[50] Kumar R and Sheet G 2021 Phys. Rev. B 104 094525
[51] Blonder G E, Tinkham M, and Klapwijk T M 1982 Phys. Rev. B 25 4515
[52] He J, Pan D, Liu M, Lyu Z, Jia Z, Yang G, Zhu S, Liu G, Shen J, Shevchenko S N, Nori F, Zhao J, Lu L, and Qu F 2023 arXiv:2303.02845 [cond-mat.mes-hall]
[53] Winkler G W, Wu Q, Troyer M, Krogstrup P, and Soluyanov A A 2016 Phys. Rev. Lett. 117 076403
[54]Whitaker J C 2018 The Electronics Handbook (New York: CRC Press)
[55]Iniewski K 2007 Wireless Technologies: Circuits, Systems, and Devices (New York: CRC Press)
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 067301
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 067301
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 067301
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 067301
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 067301
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 067301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 067301
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 067301
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 067301
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 067301
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 067301
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 067301
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 067301
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 067301
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 067301
Viewed
Full text


Abstract