Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 067401    DOI: 10.1088/0256-307X/40/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature-Dependent Anisotropy and Two-Band Superconductivity Revealed by Lower Critical Field in Organic Superconductor $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br
Huijing Mu1, Jin Si1, Qingui Yang2, Ying Xiang1, Haipeng Yang2*, and Hai-Hu Wen1*
1National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen 518060, China
Cite this article:   
Huijing Mu, Jin Si, Qingui Yang et al  2023 Chin. Phys. Lett. 40 067401
Download: PDF(2169KB)   PDF(mobile)(2213KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Resistivity and magnetization have been measured at different temperatures and magnetic fields in organic superconductors $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br. The lower critical field and upper critical field are determined, which allow to depict a complete phase diagram. Through the comparison between the upper critical fields with magnetic field perpendicular and parallel to the conducting $ac$-planes, and the scaling of the in-plane resistivity with field along different directions, we find that the anisotropy ${\varGamma}$ is strongly dependent on temperature. It is realized that ${\varGamma}$ is quite large (above 20) near $T_{\rm c}$, which satisfies the 2D model, but approaches a small value in the low-temperature region. The 2D-Tinkham model can also be used to fit the data at high temperatures. This is explained as a crossover from the orbital depairing mechanism in high-temperature and low-field region to the paramagnetic depairing mechanism in the high-field and low-temperature region. The temperature dependence of lower critical field, $H_{\rm c1} (T)$, shows a concave shape in wide temperature region. It is found that neither a single d-wave nor a single s-wave gap can fit the $H_{\rm c1} (T)$, however a two-gap model containing an s-wave and a d-wave can fit the data rather well, suggesting two-band superconductivity and an unconventional pairing mechanism in this organic superconductor.
Received: 15 April 2023      Published: 22 May 2023
PACS:  74.72.-h (Cuprate superconductors)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  62.50.-p (High-pressure effects in solids and liquids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/067401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/067401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huijing Mu
Jin Si
Qingui Yang
Ying Xiang
Haipeng Yang
and Hai-Hu Wen
[1] Kino H and Fukuyama H 1996 J. Phys. Soc. Jpn. 65 2158
[2] Buravov L I, Kushch N D, Merzhanov V A, Osherov M V, Khomenko A G, and Yagubskii E B 1992 J. Phys. I France 2 1257
[3] Sato H, Sasaki T, and Toyota N 1991 Physica C 185 2679
[4] Sasaki T, Yoneyama N, Matsuyama A, and Kobayashi N 2002 Phys. Rev. B 65 060505
[5] Pinterić M, Tomić S, Prester M, Drobac D, and Maki K 2002 Phys. Rev. B 66 174521
[6] Vulcanescu V, Lenoir C, Batail P, and Fruchter L 1995 Phys. Rev. B 52 471
[7] Lang M, Steglich F, Toyota N, and Sasaki T 1994 Phys. Rev. B 49 15227
[8] Schirber J E, Overmyer D L, Carlson K D, Williams J M, Kini A M, Wang H H, Charlier H A, Love B J, Watkins D M, and Yaconi G A 1991 Phys. Rev. B 44 4666
[9] Wang H H, Geiser U, Williams J M, Carlson K D, Kini A M, Mason J M, Perry J T, Charlier H A, and Crouch A V S 1992 Chem. Mater. 4 247
[10] Wang H H, Carlson K D, Geiser U, Kini A M, Schultz A J, Williams J M, Montgomery L, Kwok W K, Welp U, and Vandervoort K G 1991 Synth. Met. 42 1983
[11] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[12]Larkin A and Ovchinnikov I 1965 Sov. Phys.-JETP 20 762
[13] Singleton J, Symington J A, Nam M S, Ardavan A, Kurmoo M, and Day P 2000 J. Phys.: Condens. Matter 12 L641
[14] Agosta C C, Jin J, Coniglio W A, Smith B E, Cho K, Stroe I, Martin C, Tozer S W, Murphy T P, Palm E C, Schlueter J A, and Kurmoo M 2012 Phys. Rev. B 85 214514
[15] Fortune N A, Agosta C C, Hannahs S T, and Schleuter J A 2018 J. Phys.: Conf. Ser. 969 012072
[16] Mayaffre H, Krämer S, Horvatić M, Berthier C, Miyagawa K, Kanoda K, and Mitrović V 2014 Nat. Phys. 10 928
[17] Wosnitza J 2018 Ann. Phys. 530 1700282
[18] Imajo S and Kindo K 2021 Crystals 11 1358
[19] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[20] Mayaffre H, Wzietek P, Jérome D J, Lenoir C, and Batail P 1995 Phys. Rev. Lett. 75 4122
[21] De Soto S M, Slichter C P, Kini A M, Wang H, Geiser U, and Williams J 1995 Phys. Rev. B 52 10364
[22] Malone L, Taylor O J, Schlueter J A, and Carrington A 2010 Phys. Rev. B 82 014522
[23] Ichimura K, Takami M, and Nomura K 2008 J. Phys. Soc. Jpn. 77 114707
[24] Milbradt S, Bardin A A, Truncik C J S, Huttema W A, Jacko A C, Burn P L, Lo S C, Powell B J, and Broun D M 2013 Phys. Rev. B 88 064501
[25] Izawa K, Yamaguchi H, Sasaki T, and Matsuda Y 2001 Phys. Rev. Lett. 88 027002
[26] Elsinger H, Wosnitza J, Wanka S, Hagel J, Schweitzer D, and Strunz W 2000 Phys. Rev. Lett. 84 6098
[27] Müller J, Lang M, Helfrich R, Steglich F, and Sasaki T 2002 Phys. Rev. B 65 140509
[28] Zantout K, Altmeyer M, Backes S, and Valentí R 2018 Phys. Rev. B 97 014530
[29] Guterding D, Diehl S, Altmeyer M, Methfessel T, Tutsch U, Schubert H, Lang M, JMüller J, Huth M, Jeschke H O, Valentí R, Jourdan M, and Elmers H J 2016 Phys. Rev. Lett. 116 237001
[30] Pinterić M, Tomić S, and Maki K 2004 J. Phys. IV France 114 245
[31] Singleton J and Mielke C 2002 Contemp. Phys. 43 63
[32] Wosnitza J 2007 J. Low Temp. Phys. 146 641
[33] Kini A M, Geiser U, Wang H H, Carlson K D, Williams J M, Kwok W K, Vandervoort K G, Thompson J E, and Stupka D L A 1990 Inorg. Chem. 29 2555
[34] Wang H H, Kini A M, Montgomery L K, Geiser U, Carlson K D, Williams J M, Thompson J E, Watkins D M, and Kwok W K 1990 Chem. Mater. 2 482
[35] Sano K, Sasaki T, Yoneyama N, and Kobayashi N 2010 Phys. Rev. Lett. 104 217003
[36] Hartmann B, Müller J, and Sasaki T 2014 Phys. Rev. B 90 195150
[37] Hartmann B, Zielke D, Polzin J, Sasaki T, and Müller J 2015 Phys. Rev. Lett. 114 216403
[38] Stalcup T F, Brooks J S, and Haddon R C 1999 Phys. Rev. B 60 9309
[39] Kamiya S, Shimojo Y, Tanatar M, Ishiguro T, Yamochi H, and Saito G 2002 Phys. Rev. B 65 134510
[40] Kund M, Müller H, Biberacher W, Andres K, and Saito G 1993 Physica B 191 274
[41] Watanabe Y, Sato H, Sasaki T, and Toyota N 1991 J. Phys. Soc. Jpn. 60 3608
[42] Yu R C, Williams J, Wang H H, Thompson J E, Kini A M, Carlson K D, Ren J, Whangbo M H, and Chaikin P M 1991 Phys. Rev. B 44 6932
[43] Strack C, Akinci C, Pashchenko V, Wolf B, Uhrig E, Assmus W, Lang M, Schreuer J, Wiehl L, and Schlueter J 2005 Phys. Rev. B 72 054511
[44] Su X, Zuo F, Schlueter J A, Kelly M, and Williams J M 1998 Phys. Rev. B 57 R14056
[45] Zuo F, Schlueter J A, and Williams J M 1999 Phys. Rev. B 60 574
[46] Limelette P, Wzietek P, Florens S, Georges A, Costi T A, Pasquier C, Jerome D, Meziere C, and Batail P 2003 Phys. Rev. Lett. 91 016401
[47] Brison J P, Keller N, Vernière A, Lejay P, Schmidt L, Buzdin A, Flouquet J, Julian S R, and Lonzarich G G 1995 Physica C 250 128
[48] Blatter G, Geshkenbein V B, and Larkin A I 1992 Phys. Rev. Lett. 68 875
[49] Welp U, Kwok W K, Crabtree G W, Vandervoort K G, and Liu J Z 1989 Phys. Rev. B 40 5263
[50]Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill)
[51] Carrington A and Manzano F 2003 Physica C 385 205
[52] Luo H G and Xiang T 2005 Phys. Rev. Lett. 94 027001
[53]Singleton J 2001 Band Theory and Electronic Properties of Solids (Oxford: Oxford University Press) vol 2
[54] Carrington A, Bonalde I J, Prozorov R, Giannetta R W, Kini A M, Schlueter J, Wang H H, Geiser U, and Williams J M 1999 Phys. Rev. Lett. 83 4172
[55] Wakamatsu K, Miyagawa K, and Kanoda K 2020 Phys. Rev. Res. 2 043008
[56] Tsuchiya S, Yamada J I, Terashima T, Kurita N, Kodama K, Sugii K, and Uji S 2013 J. Phys. Soc. Jpn. 82 064711
Related articles from Frontiers Journals
[1] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 067401
[2] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 067401
[3] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 067401
[4] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 067401
[5] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 067401
[6] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 067401
[7] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 067401
[8] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 067401
[9] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 067401
[10] Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu, Xing-Jiang Zhou. A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method[J]. Chin. Phys. Lett., 2016, 33(06): 067401
[11] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 067401
[12] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 067401
[13] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 067401
[14] XIA Feng-Jin, WU Hao, FU Yue-Ju, XU Bo, YUAN Jie, ZHU Bei-Yi, QIU Xiang-Gang, CAO Li-Xin, LI Jun-Jie, JIN Ai-Zi, WANG Yu-Mei, LI Fang-Hua, LIU Bao-Ting, XIE Zhong, ZHAO Bai-Ru. A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides[J]. Chin. Phys. Lett., 2012, 29(10): 067401
[15] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 067401
Viewed
Full text


Abstract