Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis
LIU Chang1 , YU Wen-Jie1** , ZHANG Bo1 , XUE Zhong-Ying1 , WU Wang-Ran2 , ZHAO Yi3 , ZHAO Qing-Tai4
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 2000502 School of Electronic Science and Engineering, Nanjing University, Nanjing 2100933 Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 3100274 Peter Grünberg Institute 9, Forschungszentrum Jülich and JARA Fundamentals of Future Intormation Technology, Jülich 52425, Germany
Abstract :The gate-induced-drain-leakage of MOSFETs is analyzed to better understand the sub-threshold swing degradation of SiGe tunnel field-effect transistors and their band-to-band tunneling mechanism. The numerical model of the analysis is elaborated. Equivalent trap energy levels are extracted for Si and strained SiGe. It is found that the equivalent trap energy level in SiGe is shallower than that in Si.
出版日期: 2014-10-31
:
61.72.uf
(Ge and Si)
77.84.-s
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
72.20.Ee
(Mobility edges; hopping transport)
引用本文:
. [J]. 中国物理快报, 2014, 31(10): 106103-106103.
LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis. Chin. Phys. Lett., 2014, 31(10): 106103-106103.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/10/106103
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I10/106103
[1] Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D and Hansch W 2004 Solid-State Electron. 48 2281 [2] Knoch J, Mantl S and Appenzeller J 2007 Solid-State Electron. 51 572 [3] Boucart K and Ionescu A M 2007 IEEE Trans. Electron Devices 54 1725 [4] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743 [5] Sandow C, Knoch J, Urban C, Zhao Q T and Mantl S 2009 Solid-State Electron. 53 1126 [6] Mayer F, Le Royer C, Damlencourt J F, Romanjek K, Andrieu F, Tabone C, Previtali B and Deleonibus S 2008 IEEE International Electron Devices (San Francisco, USA 15–17 December 2008) p 163 [7] Nayfeh O M, Hoyt J L and Antoniadis D A 2009 IEEE Trans. Electron Devices 56 2264 [8] Zhao Q T, Hartmann J M and Mantl S 2011 IEEE Electron Device Lett. 32 1480 [9] Schmidt M, Minamisawa R A, Richter S, Luptak R, Hartmann J M, Buca D, Zhao Q T and Mantl S 2012 Solid-State Electron. 71 42 [10] Chen J, Chan T Y, Chen J C, Ko P K and Hu C 1987 IEEE Electron Device Lett. 8 515 [11] Huang L, Lai P T, Xu J P and Cheng Y C 1998 Microelectron. Rel. 38 1425 [12] Chen J H, Wong S C and Wang Y H 2001 IEEE Trans. Electron Devices 48 1400 [13] Kane E O 1961 J. Appl. Phys. 32 83 [14] Sentaurus Device, Synopsys Version D-2010.03 [15] Choi J B, Seo S H, Lee J U, Kang G C, Kim S W, Roh K S, Kim K Y, Lee C H, Lee S Y, Kim H T, Kim D H, Min K S, Kim D J, Kang D W, Rhee J K and Kim D M 2006 J. Korean Phys. Soc. 49 1565 [16] Rosar M, Leroy B and Schweeger G 2000 IEEE Trans. Electron Devices 47 154 [17] Yu W, Zhang B, Zhao Q T, Buca D, Hartmann J M, Luptak R, Mussler G, Fox A, Bourdelle K K, Wang X and Mantl S 2012 IEEE Electron Device Lett. 33 758 [18] Rieger M M and Vogl P 1993 Phys. Rev. B 48 14276 [19] Kao K H, Verhulst A S, Vandenberghe W G, Soree B, Groeseneken G and De Meyer K 2012 IEEE Trans. Electron Devices 59 292 [20] Kao K H, Verhulst A S, Rooyackers R, Hikavyy A, Simoen E, Arstila K, Douhard B, Loo R, Simoen A, Tolle J, Dekkers H, Machkaoutsan V, Maes J, De Meyer K, Collaert N, Heyns M, Huyghebaert C and Thean A 2013 ECS Trans. 50 965 [21] Kane E O 1960 J. Phys. Chem. Solids 12 181 [22] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234 [23] People R 1986 IEEE J. Quantum Electron. 22 1696
[1]
. [J]. 中国物理快报, 2020, 37(9): 97201-.
[2]
. [J]. 中国物理快报, 2017, 34(7): 78501-.
[3]
. [J]. 中国物理快报, 2016, 33(05): 57701-057701.
[4]
. [J]. 中国物理快报, 2014, 31(1): 16101-016101.
[5]
. [J]. Chin. Phys. Lett., 2013, 30(3): 36101-036101.
[6]
. [J]. Chin. Phys. Lett., 2013, 30(1): 16101-016101.
[7]
KE Wei-Wei;FENG Xue**;HUANG Yi-Dong. Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering [J]. 中国物理快报, 2012, 29(1): 16402-016402.
[8]
QIU Ming-Xia;RUAN Shuang-Chen**;GAO Biao;HUO Kai-Fu;ZHAI Jian-Pang;LI Ling;LIAO Hui;XU Xin-Tong
. H2 -Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism [J]. 中国物理快报, 2011, 28(10): 106104-106104.
[9]
GAO Li-Peng;HAN Pei-De**;MAO Xue;FAN Yu-Jie;HU Shao-Xu;ZHAO Chun-Hua;MI Yan-Hong
. Deep Energy Levels Formed by Se Implantation in Si [J]. 中国物理快报, 2011, 28(3): 36108-036108.
[10]
DAI Jun;LI Zhen-Yu;YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium [J]. 中国物理快报, 2010, 27(8): 86102-086102.