The electronic structure, lattice dynamics, and electron-phonon coupling of gallium-doped germanium are investigated using a initio supercell methods. Our results indicate the superconducting transition in gallium-doped germanium can be explained within a standard phonon mediated mechanism. The contribution of acoustic modes to the coupling constant λ almost entirely comes from Ga related modes, and ~25% to λ. The calculated coupling constant is 0.35 and the corresponding transition temperature is 0.44 K for the gallium-doped germanium with 6.25% gallium content using Coulomb pseudopotential μ*=0.1, in agreement well with the experimental data.
The electronic structure, lattice dynamics, and electron-phonon coupling of gallium-doped germanium are investigated using a initio supercell methods. Our results indicate the superconducting transition in gallium-doped germanium can be explained within a standard phonon mediated mechanism. The contribution of acoustic modes to the coupling constant λ almost entirely comes from Ga related modes, and ~25% to λ. The calculated coupling constant is 0.35 and the corresponding transition temperature is 0.44 K for the gallium-doped germanium with 6.25% gallium content using Coulomb pseudopotential μ*=0.1, in agreement well with the experimental data.
DAI Jun;LI Zhen-Yu;YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. 中国物理快报, 2010, 27(8): 86102-086102.
DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium. Chin. Phys. Lett., 2010, 27(8): 86102-086102.
[1] Herrmannsdörfer T et al 2009 Phys. Rev. Lett. 102 217003 [2] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [3] Blase X et al 2009 Nature Mater. 8 375 [4] Akimov E A et al 2004 Nature 428 542 [5] Bustarret E et al 2006 Nature 444 465 [6] Ren Z A et al 2007 J. Phys. Soc. Jpn. 76 103710 [7] Kriener M et al 2008 Phys. Rev. B 78 024517 [8] Borei L, Kortus K and Andersen O K 2004 Phys. Rev. Lett. 93 237002 [9] Lee K W and Pickett W E 2004 Phys. Rev. Lett. 93 237003 [10] Ma Y et al 2005 Phys. Rev. B 72 014306 [11] Blase X, Adessi C and Connétable D 2004 Phys. Rev. Lett. 93 237004 [12] Xiang H J et al 2004 Phys. Rev. B 70 212504 [13] Giustino F et al 2007 Phys. Rev. Lett. 98 047005 [14] Bourgeois E and Blase X 2007 Appl. Phys. Lett. 90 142511 [15] Margine E R and Blase X 2008 Appl. Phys. Lett. 93 192510 [16] Noffsinger J et al 2009 Phys. Rev. B 79 104511 [17] Lebégue S 2009 Phys. Status Solidi: Rapid Res. Lett. 3 224 [18] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864 [19] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133 [20] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [21] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [22] Giannozzi P et al 2009 J. Phys.: Condens. Matter. 21 395502 [23] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [24] McMillan W L 1968 Phys. Rev. 167 331 [25] Hom T, Kiszenick W and Post B 1975 J. Appl. Cryst. 8 457 [26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [27] Cerdeira F and Cardona M 1972 Phys. Rev. B 5 1440