First Principle Study on the Influence of Sr/Ti Ratio on the Atomic Structure and Dislocation Behavior of SrTiO3
GUAN Li1,2** , JIA Guo-Qi1 , ZUO Jin-Gai1 , LIU Qing-Bo1 , WEI Wei1 , GUO Jian-Xin1 , DAI Xiu-Hong1
1 College of Physical Science and Technology, Hebei University, Baoding 071002
2 Hebei Provincial Key Laboratory of Optic-Electronic Information Materials, Hebei University, Baoding 071002
Abstract :Using the first principle method, we investigate the influence of Sr/Ti ratio on the atomic structure and dislocation behavior of Srn +1 Tin O3n+ 1 (Ruddlesden–Popper phase) and Srn Tin +1 O3n+ 2 (Magnéli phase). A linear lattice expansion versus the Sr/Ti ratio exhibits in the Ruddlesden–Popper and Magnéli phases. The Ruddlesden–Popper phase has lower formation energy and superior structural stability than the Magnéli phase. The two phases show different dislocation behaviors and it is found that a possibly preferred slip system <110> {110} emerges in the two phases, and the dislocations are more likely to dissociate into partial dislocations in Magnéli phases.
收稿日期: 2012-11-26
出版日期: 2013-04-28
:
77.84.Bw
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
61.72.-y
(Defects and impurities in crystals; microstructure)
引用本文:
. [J]. 中国物理快报, 2013, 30(4): 47703-047703.
GUAN Li, JIA Guo-Qi, ZUO Jin-Gai, LIU Qing-Bo, WEI Wei, GUO Jian-Xin, DAI Xiu-Hong. First Principle Study on the Influence of Sr/Ti Ratio on the Atomic Structure and Dislocation Behavior of SrTiO3 . Chin. Phys. Lett., 2013, 30(4): 47703-047703.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/30/4/047703
或
https://cpl.iphy.ac.cn/CN/Y2013/V30/I4/47703
[1] Ohtomo A and Hwang Y 2004 Nature 427 423
[2] Ohnishi T, Shibuya K, Yamamoto T and Lippmaa M 2008 J. Appl. Phys. 103 103703
[3] Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y and Yamamoto T 2011 Appl. Phys. Lett. 99 173109
[4] Breckenfeld E, Wilson R, Karthik J, Damodaran A R, Cahill D G and Martin L W 2012 Chem. Mater. 24 331
[5] Yang F, Jin K J, Lu H B, He M and Yang G Z 2009 Chin. Phys. Lett. 26 077301
[6] Ohnishi T, Lippmaa M, Yamamoto T, Meguro S and Koinum H 2005 Appl. Phys. Lett. 87 241919
[7] Ruddlesden S N and Popper P 1957 Acta Crystallogr. 10 538
[8] Ruddlesden S N and Popper P 1958 Acta Crystallogr. 11 54
[9] Andersson S, Collén B, Kuylenstierna U and Magnéli A 1957 Acta Chem. Scand. 11 1641
[10] Suzuki T, Nishi Y and Fujimoto M 2000 Philos. Mag. A 80 621
[11] Haeni J H, Theis C D, Schlom D G, Tian W, Pan X Q, Chang H, Takeuchi I and Xiang X D 2001 Appl. Phys. Lett. 78 3292
[12] Shibuya K, Mi S B, Jia C L, Meuffels P and Dittmann R 2008 Appl. Phys. Lett. 92 241918
[13] Fennie C J and Rabe K M 2003 Phys. Rev. B 68 184111
[14] Benedek N A, Elsässer C and Finnes M W 2008 J. Phys.: Conf. Ser. 94 012005
[15] Yun J N, Zhang Z Y, Yan J F and Zhao W 2009 Chin. Phys. Lett. 26 017107
[16] Lee K H, Kim S W, Ohta H and Koumoto K 2006 J. Appl. Phys. 100 063717
[17] Liu Y F, Lu Y N, Xu M and Zhoun L F 2007 J. Am. Ceram. Soc. 90 1774
[18] Lee K H, Kim S W, Ohta H and Koumoto K 2007 J. Appl. Phys. 101 083707
[19] Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y and Yamamoto T 2011 Appl. Phys. Lett. 99 033110
[20] Tenne D A, Farrar A K, Brooks C M, Heeg T, Schubert J, Jang H W, Bark C W, Folkman C M, Eom C B and Schlom D G 2010 Appl. Phys. Lett. 97 142901
[21] Zhang Z, Sigle W, Kurtz W and Rühle M 2002 Phys. Rev. B 66 214112
[22] Ferré D, Carrez P and Cordier P 2008 Phys. Rev. B 77 014106
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[24] Vanderbilt D 1990 Phys. Rev. B 41 7892
[25] Mitchell R H, Chakhmouradian A R and Woodward P M 2000 Phys. Chem. Miner. 27 583
[26] Brooks C M, Kourkoutis L F, Heeg T, Schubert J, Muller D A and Schlom D G 2009 Appl. Phys. Lett. 94 162905
[27] Noguera C 2000 Philos. Mag. Lett. 80 173
[28] Birol T, Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 107 257602
[29] Bacq O L, Salinas E, Pisch A, Bernard C and Pasturel A 2006 Philos. Mag. 86 2283
[30] McCoy M A, Frimes R W and Lee W E 1997 Philos. Mag. A 75 833
[31] Suzuki T and Fujimoto M 2001 J. Appl. Phys. 89 5622
[32] Nishigaki J, Kuroda K and Saka H 1991 Phys. Status Solidi A 128 319
[33] Carrez P, Ferré D, Denoual C and Cordier P 2010 Scr. Mater. 63 434
[34] Hirel P, Marton P, Mrovec M and Elsässer C 2010 Acta Mater. 58 6072
[35] Sigle W, Sarbu C, Brunner D and Rühle M 2006 Philos. Mag. 86 4809
[36] Rodriguez M C and Sigle W 2010 Scr. Mater. 62 270
[37] Vitek V 1968 Philos. Mag. 18 773
[38] Vitek V and Paidar V 2008 Dislocations Solids (Amsterdam: North Holland) vol 14 p 441
[39] Denoual C 2004 Phys. Rev. B 70 024106
[1]
. [J]. 中国物理快报, 2017, 34(2): 28101-028101.
[2]
. [J]. 中国物理快报, 2016, 33(08): 86101-086101.
[3]
. [J]. 中国物理快报, 2016, 33(06): 66301-066301.
[4]
. [J]. 中国物理快报, 2016, 33(05): 57701-057701.
[5]
. [J]. 中国物理快报, 2015, 32(12): 127701-127701.
[6]
. [J]. 中国物理快报, 2015, 32(07): 74204-074204.
[7]
. [J]. 中国物理快报, 2015, 32(03): 37301-037301.
[8]
. [J]. 中国物理快报, 2014, 31(06): 67701-067701.
[9]
. [J]. 中国物理快报, 2014, 31(03): 36201-036201.
[10]
. [J]. 中国物理快报, 2013, 30(12): 128102-128102.
[11]
. [J]. 中国物理快报, 2013, 30(10): 107301-107301.
[12]
. [J]. 中国物理快报, 2013, 30(8): 87304-087304.
[13]
. [J]. 中国物理快报, 2013, 30(4): 47701-047701.
[14]
. [J]. Chin. Phys. Lett., 2013, 30(3): 37303-037303.
[15]
DOU Yan-Kun, QI Xin, JIN Hai-Bo, CAO Mao-Sheng, Usman Zahid, HOU Zhi-Ling. First Principle Study of the Electronic Properties of 3C-SiC Doped with Different Amounts of Ni [J]. 中国物理快报, 2012, 29(7): 77701-077701.