Sacrifice-Template Synthesis of CdTe Nanorod Arrays in Glycol via a Solvothermal Process
DENG Yuan** , LIU Jing, WANG Yao, LIANG Li-Xing
Beijing Key Laboratory of Special Functional Materials and Film, School of Materials Science and Engineering, Beihang University, Beijing 100191
Abstract :CdTe nanorod arrays were prepared by using a simple solvothermal process using Te nanorod arrays as the sacrifice template. The CdTe nanorods are orientation stacked by lots of CdTe nanoparticles. The photoluminescence properties of these arrays include excellent fluorescence. The concentration of KOH plays a key role in the formation of CdTe nanorod arrays. The possible formation mechanism of CdTe nanorod arrays is proposed.
收稿日期: 2012-05-30
出版日期: 2012-07-31
:
68.55.-a
(Thin film structure and morphology)
68.65.-k
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
[1] Kim C J, Lee H S, Cho Y J, Kang K and Jo M H 2010 Nano Lett. 10 2043 [2] Jiang W, Gao H and Xu L L 2012 Chin. Phys. Lett. 29 037102 [3] Zhang Z K, Duanmu Q D, Zhao D X, Wang L D and Shen D Z 2012 Chin. Phys. Lett. 29 017804 [4] Zhai T Y, Fang X S, Liao M Y, Xu X J, Li L, Liu B D, Koide Y S, Ma Y, Yao J N, Bando Y and Golberg D 2010 ACS Nano 4 1596 [5] Kung S C, Van Der Veer W E, Yang F, Donavan K C and Penner R M 2010 Nano Lett. 10 1481 [6] Zhai T Y, Liu H M, Li H Q, Fang X S, Liao M Y, Li L, Zhou H S, Koide Y S, Bando Y and Golberg D 2010 Adv. Mater. 22 2547 [7] Cheng J, Zou X P, Song W L, Cao M S, Su Y, Yang G Q, Lü X M and Zhang F X 2010 Chin. Phys. Lett. 27 057302 [8] Zhang L, Pan C F and Zhu J 2008 Chin. Phys. Lett. 25 3056 [9] Ye Y, Dai L, Sun T, You L P, Zhu R, Gao J Y, Peng R M, Yu D P and Qin G G 2010 J. Appl. Phys. 108 44301 [10] Trudeau P E, Sheldon M, Altoe V and Alivisatos A P 2008 Nano Lett. 8 1936 [11] Al-Ghamdi A A, Khan S A, Nagat A and El-Sadek M S A 2010 Opt. Laser Technol. 42 1181 [12] He C Y, Gao C X, Li M, Hao A M, Huang X W, Zhang D M, Yu C L and Wang Y 2007 Chin. Phys. Lett. 24 1070 [13] Park S H and Hong W P 2010 Chin. Phys. Lett. 27 098502 [14] Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmüller A and Weller H 2002 J. Phys. Chem. B 106 7177 [15] Wei W, Bao X Y, Soci C, Ding Y, Wang Z L and Wang D 2009 Nano Lett. 9 2926 [16] Wang X N, Kim K, Wang Y M, Stadermann M, Noy A, Hamza A V, Yang J H and Sirbuly D J 2010 Nano Lett. 10 4901 [17] Hou J W, Yang X C, Lv X Y, Peng D F, Huang M and Wang Q Y 2011 Appl. Surf. Sci. 257 7684 [18] Neretina S, Hughes R A, Devenyi G A, Sochinskii N V, Preston J S and Mascher P 2007 Nanotechnology 18 275301 [19] Wang X N, Wang J, Zhou M J, Zhu H J, Wang H, Cui X D, Xiao X D and Li Q 2009 J. Phys. Chem. C 113 16951 [20] Consonni V, Rey G, Bonaime J et al 2011 Appl. Phys. Lett. 98 11906 [21] He J Y, Mao S L, Zhang S Y, Niu H L, Jin B K and Tian Y P 2009 Mater. Sci. Semicond. Process. 12 217 [22] Liang H W, Liu S, Wu Q S and Yu S H 2009 Inorg. Chem. 48 4927
[1]
. [J]. 中国物理快报, 2022, 39(4): 48101-.
[2]
. [J]. 中国物理快报, 2022, 39(3): 36801-.
[3]
. [J]. 中国物理快报, 2021, 38(11): 116801-.
[4]
. [J]. 中国物理快报, 2021, 38(7): 77301-.
[5]
. [J]. 中国物理快报, 2021, 38(3): 38102-.
[6]
. [J]. 中国物理快报, 2020, 37(11): 118401-.
[7]
. [J]. 中国物理快报, 2020, 37(9): 96801-.
[8]
. [J]. 中国物理快报, 2020, 37(4): 46801-.
[9]
. [J]. 中国物理快报, 2020, 37(3): 38101-.
[10]
. [J]. 中国物理快报, 2020, 37(2): 26801-.
[11]
. [J]. 中国物理快报, 2019, 36(12): 120701-.
[12]
. [J]. 中国物理快报, 2019, 36(7): 78101-.
[13]
. [J]. 中国物理快报, 2018, 35(9): 96801-.
[14]
. [J]. 中国物理快报, 2018, 35(8): 86801-.
[15]
. [J]. 中国物理快报, 2018, 35(6): 66801-.