Abstract:The contact angle and surface energy values of diamond are systemically investigated in terms of surface treatments (hydrogen- and oxygen-terminations), structure feature (single crystal diamonds and polycrystalline diamond films), crystal orientation ((100), (111) and mixed (100)/(111) orientations), different fluids (probes of polar deionized water and nonpolar di-iodomethane). It is found that the hydrophobic/hydrophilic characteristic and surface energy values of diamond are mainly determined by the surface hydrogen/oxygen termination, and less related to the structural features and crystal orientation. Based on the contact angle values with polar water and nonpolar di-iodomethane, the surface energies of diamond are estimated to be about 43 mJ/m$^{2}$ for hydrogen-termination and about 60 mJ/m$^{2}$ for oxygen-termination. Furthermore, the varying surface roughness of diamond and fluids with different polarities examined determine the variation of contact angles as well as the surface energy values. These results would be helpful for a more detailed understanding of the surface properties of diamond films for further applications in a broad number of fields, such as optical and microwave windows, biosensors, and optoelectronic devices, etc.