Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range
Jianguo Zhao1,2*, Kai Chen1, Maogao Gong1, Wenxiao Hu1, Bin Liu1*, Tao Tao1, Yu Yan1, Zili Xie1, Yuanyuan Li2, Jianhua Chang2, Xiaoxuan Wang4, Qiannan Cui4, Chunxiang Xu4, Rong Zhang1,3, and Youdou Zheng
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China 2School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China 3Xiamen University, Xiamen 361000, China 4State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Abstract:Nonpolar (11$\bar{2}$0) plane In$_{x}$Ga$_{1- x}$N epilayers comprising the entire In content ($x$) range were successfully grown on nanoscale GaN islands by metal-organic chemical vapor deposition. The structural and optical properties were studied intensively. It was found that the surface morphology was gradually smoothed when $x$ increased from 0.06 to 0.33, even though the crystalline quality was gradually declined, which was accompanied by the appearance of phase separation in the In$_{x}$Ga$_{1- x}$N layer. Photoluminescence wavelengths of 478 and 674 nm for blue and red light were achieved for $x$ varied from 0.06 to 0.33. Furthermore, the corresponding average lifetime ($\tau_{1/e}$) of carriers for the nonpolar InGaN film was decreased from 406 ps to 267 ps, indicating that a high-speed modulation bandwidth can be expected for nonpolar InGaN-based light-emitting diodes. Moreover, the bowing coefficient ($b$) of the (11$\bar{2}$0) plane InGaN was determined to be 1.91 eV for the bandgap energy as a function of $x$.
Meng W, Xu F, Yu Z, Tao T, Shao L, Liu L, Li T, Wen K, Wang J, He L, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y, and Wang X 2021 Nat. Nanotechnol.16 1231
[5]
Chen S W H, Huang Y M, Chang Y H, Lin Y, Liou F J, Hsu Y C, Song J, Choi J, Chow C W, Lin C C, Horng R H, Chen Z, Han J, Wu T, and Kuo H C 2020 ACS Photon.7 2228
Zhang S, Zhang J, Gao J, Wang X, Zheng C, Zhang M, Wu X, Xu L, Ding J, Quan Z, and Jiang F 2020 Photon. Res.8 1671
[11]
Bi Z, Lenrick F, Colvin J, Gustafsson A, Hultin O, Nowzari A, Lu T, Wallenberg R, Timm R, Mikkelsen A, Ohlsson B J, Storm K, Monemar B, and Samuelson L 2019 Nano Lett.19 2832
Li H, Khoury M, Bonef B, Alhassan A I, Mughal A J, Azimah E, Samsudin M E A, De Mierry P, Nakamura S, Speck J S, and DenBaars S P 2017 ACS Appl. Mater. & Interfaces9 36417
Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, and Sota T 2006 Nat. Mater.5 810