1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 2Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 3Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen, Germany
Influence of N2 Flux on InN Film Deposition on Sapphire (0001) Substrates by ECR-PEMOCVD
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 2Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024 3Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, D-57076 Siegen, Germany
摘要Highly preferred InN films are deposited on sapphire (0001) substrates by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) without using a buffer layer. The structure, surface morphological and electrical characteristics of InN are investigated by in-situ reflection high energy electron diffraction, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and Hall effect measurement. The quality of the as-grown InN films is markedly improved at the optimized N2 flux of 100 sccm. The results show that the properties of the films are strongly dependent on N2 flux.
Abstract:Highly preferred InN films are deposited on sapphire (0001) substrates by electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) without using a buffer layer. The structure, surface morphological and electrical characteristics of InN are investigated by in-situ reflection high energy electron diffraction, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and Hall effect measurement. The quality of the as-grown InN films is markedly improved at the optimized N2 flux of 100 sccm. The results show that the properties of the films are strongly dependent on N2 flux.
[1] Nakamura S et al 1998 Appl. Phys. Lett. 73 832
[2] Akasaki I et al 1996 Electron. Lett. 32 1105
[3] Yamamoto A et al 2010 Phys. Status Solidi C 7 1309
[4] Elaissa T and Namkoonga G 2006 J. Cryst. Growth 288 218
[5] Yamamoto A, Tsujino M et al 1994 Sol. Energy Mater. Sol. Cells 35 53
[6] Ascazubi R, Wilke I, Denniston K et al 2004 Appl. Phys. Lett. 84 4810
[7] Bhuiyan A G, Hashimoto A et al 2003 J. Appl. Phys. 94 2779
[8] Brian E F et al 1999 J. Appl. Phys. 85 7727
[9] Leary O, Stephen K et al 1998 J. Appl. Phys. 83 826
[10] McChesney J B, Bridenbaugh P M et al 1970 Mater. Res. Bull. 5 783
[11] Yamamoto A, Tanaka T et al 2002 Phys. Status Solidi 1945 10
[12] Yamamoto A, Murakami Y et al 2002 Phys. Status Solidi B 94 510
[13] Yamamoto A et al 1998 J. Cryst. Growth 189 461
[14] Chen W K, Pan Y C et al 1997 Jpn. J. Appl. Phys. 36 1625
[15] Lu H et al 2001 Appl. Phys. Lett. 79 1489
[16] Yasushi N et al 2003 Jpn. J. Appl. Phys. 42 2549
[17] Xu K and Yoshikawa A 2003 Appl. Phys. Lett. 83 251
[18] Yoshinao K et al 2007 J. Cryst. Growth 300 57
[19] Syrkin1 A L et al 2008 Phys. Status Solidi C 5 1792
[20] Feiler D et al 1997 J. Cryst. Growth 171 12
[21] Shinoda H and Mutsukura N 2006 Thin Solid Films 503 8
[22] Xu Y, Gu B and Qin F W et al 2004 J. Vac. Sci. Technol. A 22 302
[23] Davydov V Y et al 2002 Phys. Status Solidi B 229 R1
[24] Bi Z X et al 2005 Thin Solid Films 488 111
[25] Parala H et al 2001 J. Cryst. Growth 231 68
[26] Duxbury N et al 2000 Appl. Phys. Lett. 76 1600
[27] Muraki K et al 1992 Appl. Phys. Lett. 61 557
[28] Moison J M et al 1991 J. Cryst. Growth 111 141