Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling
Shu-Zhe Mei1,2 , Quan Wang1,3 , Mei-Lan Hao1,2,4 , Jian-Kai Xu1,2 , Hong-Ling Xiao1,2 , Chun Feng1,2 , Li-Juan Jiang1,2 , Xiao-Liang Wang1,2** , Feng-Qi Liu1,2 , Xian-Gang Xu3 , Zhan-Guo Wang1,2
1 Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832 University of Chinese Academy of Sciences, Beijing 1000493 State Key Laboratory of Crystal Materials, Shandong University, Jinan 2501004 School of Information & Electrical Engineering, Hebei University of Engineering, Handan 056038
Abstract :Metal organic chemical vapor deposition (MOCVD) growth systems are one of the main types of equipment used for growing single crystal materials, such as GaN. To obtain film epitaxial materials with uniform performance, the flow field and temperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to study the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding significance for the growth of GaN film materials.
收稿日期: 2018-05-31
出版日期: 2018-08-29
:
81.15.Aa
(Theory and models of film growth)
81.15.Gh
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
81.05.Ea
(III-V semiconductors)
引用本文:
. [J]. 中国物理快报, 2018, 35(9): 98101-.
Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling. Chin. Phys. Lett., 2018, 35(9): 98101-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/9/098101
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I9/98101
[1] Cui L et al 2015 J. Semicond. 36 103002 [2] Liu S et al 2011 J. Appl. Phys. 110 113514 [3] Liu S T, Zhao D G, Yang J, Jiang D S, Liang F, Chen P, Zhu J J, Liu Z S, Li X, Liu W et al 2017 Chin. Phys. B 26 107102 [4] Navamathavan R, Ra Y H, Song K Y, Kim D W and Lee C R 2011 Curr. Appl. Phys. 11 77 [5] Stringfellow G B 1999 Organometallic Vapor-Phase Epitaxy: Theory and Practice (New York: Academic Press) [6] Wang J, Wang T Q, Pan G S and Lu X C 2016 Appl. Surf. Sci. 361 18 [7] Wang Y J et al 2017 Opt. Commun. 387 440 [8] Zhang Y, Wu Z F, Gao P F, Fang D Q and Zhang S L 2017 J. Alloys Compd. 704 478 [9] Gurary A I, Tompa G S, Thompson A G, Stall R A, Zawadzki P A and Schumaker N E 1994 J. Cryst. Growth 145 642 [10] Hwang C Y, Schurman M J, Mayo W E, Lu Y C, Stall R A and Salagaj T 1997 J. Electron. Mater. 26 243 [11] Thompson A G 1997 Mater. Lett. 30 255 [12] Li J, Wang J, Cai J D, Xu Y F, Fan B F and Wang G 2018 Int. Commun. Heat Mass Transfer 91 64 [13] Breil W G, Coltrin M E, Creighton J R, Hou H Q, Moffat H K and Tsao J Y 1999 Mater. Sci. Eng. R 24 241 [14] Dimitrios I, Kremer A M, McKenna D R and Jensen K F 1987 J. Cryst. Growth 85 154 [15] Fotiadis D I and Jensen K F 1990 J. Cryst. Growth 102 743 [16] Kuo W S, Wang C Y, Tuh J L and Lin T F 2005 J. Cryst. Growth 274 265 [17] Kadinski L, Merai V, Parekh A, Ramer J, Armour E, Stall R, Gurary A, Galyukov A and Makarov Y 2004 J. Cryst. Growth 261 175 [18] Shin C Y, Baek B J, Lee C R, Pak B, Yoon J M and Park K S 2003 J. Cryst. Growth 247 301 [19] Gkinis P A, Aviziotis I G, Koronaki E D, Gakis G P, Boudouvis A G 2017 J. Cryst. Growth 458 140 [20] Tseng C F, Tsai T Y, Huang Y H, Lee M T and Horng R H 2015 J. Cryst. Growth 432 54 [21] Hu C K, Chen C J, Wei T C, Li T T, Huang C Y, Chao C L and Lin Y J 2017 Surf. Coat. Technol. 7 112 [22] Wu Y Y 2017 Dynamic Simulation and Modelling of Chemical Vapour Deposition Process (Nottingham: University of Nottingham) [23] Li J, Fei Z Y, Xu Y F, Wang J, Fan B F, Ma X J and Wang G 2018 R. Soc. Open Sci. 5 171757 [24] Kazakov D V, Tomas V, Bernhard Z, J Andrew C, Spagnolo D V et al 1999 Organometallic vapor-phase epitaxy (New York: Academic Press) p 251 [25] Panton R L 2013 Incompressible Flow 4th edn (New York: Wiley)
[1]
. [J]. 中国物理快报, 2019, 36(3): 38101-.
[2]
. [J]. 中国物理快报, 2014, 31(2): 26802-026802.
[3]
. [J]. 中国物理快报, 2013, 30(9): 98102-098102.
[4]
LIU Lin-Xia;GUAN Sheng-Guo;LIU Qi;ZHANG Ya-Ting;SHAO Cheng-Gang;LUO Jun. Precision Measurement of Distribution of Film Thickness on Pendulum for Experiment of G [J]. 中国物理快报, 2009, 26(9): 90402-090402.
[5]
FAN Hai-Bo;YANG Shao-Yan;ZHANG Pan-Feng;WEI Hong-Yuan;LIU Xiang-Lin;JIAO Chun-Mei;ZHU Qin-Sheng;CHEN Yong-Hai;WANG Zhan-Guo. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition [J]. 中国物理快报, 2008, 25(8): 3063-3066.
[6]
XU Wen-Bin;DONG Shu-Rong;WANG De-Miao. Modelling and Optimization for Deposition of SiOx Ny Films by Radio-Frequency Reactive Sputtering [J]. 中国物理快报, 2007, 24(9): 2681-2684.
[7]
GUAN Li;ZHANG Duan-Ming;LI Zhi-Hua;TAN Xin-Yu;LI Li;LIU Dan;FANG Ran-Ran;LIU Gao-Bin;HU De-Zhi. Effect of Incident Intensity on Films Growth in Pulsed Laser Deposition [J]. 中国物理快报, 2006, 23(8): 2277-2280.
[8]
SHAO Qing-Yi;FANG Rong-Chuan;ZHU Kai-Gui;LIAO Yuan;XUE Zeng-Quan. Initial Growth of Thin Films with Low Nucleus Density and Linear Lateral Growth Rate on a Substrate Surface [J]. 中国物理快报, 2001, 18(8): 1135-1137.
[9]
XU Ming-Chun QIAN Hai-Jie;LIU Feng-Qin;KRASH Ibrahim;LAI Wu-Yan;WU Si-Cheng. Pb Surfactant-Assisted Co Film Growth on Cu (111) [J]. 中国物理快报, 2000, 17(8): 595-597.