Abstract:The surface morphology InGaAs layers with In composition of 0.3 on GaAs (001) substrates are simulated by the phase field method. We investigate the influence of the strain field induced by static point defects on surface morphology of the InGaAs thin film. Our simulation demonstrates that the rms roughness of the thin film surface is strongly dependent on the density and magnitude of the randomly distributed point defects. Point defects near the thin film surface can produce a relatively large change of the surface morphology. The influences of thin film thickness on the surface morphology with different defect distributions are illustrated in the simulations. Additionally, a combination of experiment and theory is used to examine the influence of the defect density and magnitude on the surface morphology and roughness.
. [J]. 中国物理快报, 2014, 31(2): 26802-026802.
WU Ping-Ping, GAO Fang-Liang, ZHANG Shu-Guang, LI Guo-Qiang. Surface Morphology of GaAs/In0.3Ga0.7As in an Elastic Field of Static Point Defects. Chin. Phys. Lett., 2014, 31(2): 26802-026802.
[1] King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett.90 183516 [2] Guter W, Sch?ne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W and Dimroth F 2009 Appl. Phys. Lett.94 223504 [3] Wiemer M, Sabnis V and Yuen H 2011 Proc. SPIE8108 810804 [4] Luque A 2011 J. Appl. Phys.110 031301 [5] Kurtz S R, Myers D and Olson J M 1997 IEEE The 26th Photovoltaic Specialists Conference (Anaheim 29 September–03 October 1997) p 875 [6] Friedman D J, Geisz J F, Norman A G, Wanlass M W and Kurtz S R 2006 The 4th World Conference on Photovoltaic Energy Conversion (Hawaii 7–12 May 2006) p 598 [7] Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T, Romero M J, Norman A G and Jone K M 2008 IEEE The 33rd Photovoltaic Specialists Conference (San Diego 11–16 May 2008) p 1 [8] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley) [9] Pillai M R, Kim S S, Ho S T and Barnett S A 2000 J. Vac. Sci. Technol. B 18 1232 [10] Matthews J W and Blakeslee A E 1976 J. Cryst. Growth32 265 [11] Millunchick J M and Barnett S A 1994 Appl. Phys. Lett.65 1136 [12] Ashcroft N W and Mermin N D 1976 Solid State Physics (Orlando: Harcourt) [13] Valtuena J F, Sacedon A, Alvarez A L, Izputa I, Calle F, Calleja E, MacPherson G, Goodhew P J, Pacheco F J, Garcia R and Molina S I 1997 J. Cryst. Growth182 281 [14] Haupt M, Kohler K, Ganser P, Emminger S, Muller S and Rothemund W 1996 Appl. Phys. Lett.69 412 [15] Ren Y Y, Xu B, Wang Z G, Liu M and Long S B 2007 Chin. Phys. Lett.24 2689 [16] Takano Y, Kobayashi K, Iwahori H, Kuroyanagi N, Kuwahara K, Fuke S and Shirakata S 2002 Appl. Phys. Lett.80 2054 [17] An Y P, Yang H, Mei T, Wang Y D, Teng J H and Xu C D 2010 Chin. Phys. Lett.27 017302 [18] Cahn J W and Hilliard J E 1958 J. Chem. Phys.28 258 [19] Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York: Wiley) [20] Wu P P, Gao F L, Zhang K H L and Li G Q 2013 RSC Adv.3 3973 [21] Chen L Q and Shen J 1998 Comput. Phys. Commun.108 147 [22] Kurilo I V and Guba S K 2011 Inorgan. Mater.47 819 [23] Anan T, Nishi K and Sugou S 1992 Appl. Phys. Lett.60 3159 [24] Chuang S L 1995 Physics of Optoelectronics Devices (New York: Wiley) [25] Mariager S O, Lauridsen S L, Dohn A, Bovet N, S ?rensen C B, Schleputz C M, Willmott P R and Feidenhansl R 2009 J. Appl. Crystallogr.42 369 [26] Pelliccione M and Lu T M 2007 Evolution of Thin Film Morphology Modeling and Simulations (Berlin: Springer) [27] Medel-Ruiz C I, Lastras-Martinez A and Balderas-Navarro R E 2003 Phys. Status Solidi C 0 893 [28] Chokshi N, Bouville M and Millunchick J M 2002 J. Cryst. Growth236 563