Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition
GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing**
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Physical Science and Technology School, Lanzhou University, Lanzhou 730000
Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition
GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing**
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Physical Science and Technology School, Lanzhou University, Lanzhou 730000
摘要Hydrogenated nanocrystalline silicon films are deposited onto glass substrates at different substrate temperatures (140–400 °C) by hot−filament chemical vapor deposition. The effect of substrate temperature on the structural properties are investigated. With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase. The maximum Raman crystalline volume fraction of the nanocrystalline silicon films is about 74% and also has the highest microstructural factor (R=0.89) at a substrate temperature of 250 °C. The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction. The continuous transition of the film structures from columnar to agglomerated is observed at a substrate temperature of 300 °C. The optical band gaps of the grown thin films declines (from 1.89 to 1.53 eV) and dark electrical conductivity increases (from about 10−10 to about 10−6 S/cm) with the increasing substrate temperature.
Abstract:Hydrogenated nanocrystalline silicon films are deposited onto glass substrates at different substrate temperatures (140–400 °C) by hot−filament chemical vapor deposition. The effect of substrate temperature on the structural properties are investigated. With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase. The maximum Raman crystalline volume fraction of the nanocrystalline silicon films is about 74% and also has the highest microstructural factor (R=0.89) at a substrate temperature of 250 °C. The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction. The continuous transition of the film structures from columnar to agglomerated is observed at a substrate temperature of 300 °C. The optical band gaps of the grown thin films declines (from 1.89 to 1.53 eV) and dark electrical conductivity increases (from about 10−10 to about 10−6 S/cm) with the increasing substrate temperature.
GUO Xiao-Song;ZHANG Shan-Shan;BAO Zhong;ZHANG Hong-Liang;CHEN Chang-Cheng;LIU Li-Xin;LIU Yan-Xia;XIE Er-Qing**
. Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition[J]. 中国物理快报, 2011, 28(2): 28103-028103.
GUO Xiao-Song, ZHANG Shan-Shan, BAO Zhong, ZHANG Hong-Liang, CHEN Chang-Cheng, LIU Li-Xin, LIU Yan-Xia, XIE Er-Qing**
. Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition. Chin. Phys. Lett., 2011, 28(2): 28103-028103.
[1] Veprek S and Maecek V 1968 Solid-State Electron. 11 683
[2] Meirav U et al 1990 Phys. Rev. Lett. 65 771
[3] Matins R et al 1997 Thin Solid Films 303 47
[4] He Y L et al 1994 J. Appl. Phys. 75 797
[5] Yamamoto K et al 1990 Mater. Res. Soc. Sym. Proc. 164 161
[6] Sheng S R et al 2001 Mater. Res. Soc. Sym. Proc. 664 A23.4.1
[7] Losurdo M et al 2000 J. Appl. Phys. 88 2408
[8] Iqbal Z and Vepiek S 1982 J. Phys. C: Solid State Phys. 15 377
[9] Veprek S et al 1987 Phys. Rev. B 36 3344
[10] Yue G et al 1999 Appl. Phys. Lett. 75 492
[11] Veprek S et al 1982 Phil. Mag. B 45 137
[12] Matsumura H et al 2001 Jpn. J. Appl. Phys. 40 L289
[13] Heya A et al 2000 J. Non-Cryst. Solids 266–269 619
[14] Yamada A et al 1989 Jpn. J. Appl. Phys. 28 L2284
[15] Tsai C C et al 1989 Mater. Res. Sot. Sym. Proc. 149 297
[16] Hu Y H et al 2005 Chin. Phys. 14 1457
[17] Wagner H and Beyer W 1983 Solid State Commun. 48 585
[18] Liu G H et al 2007 Chin. Phys. 16 588
[19] Webb J D et al 1999 Mater. Res. Soc. Sym. Proc. 557 311
[20] David L Y et al 2007 Appl. Phys. Lett. 90 081923
[21] Tauc J et al 1966 Phys. Status Solidi 15 627
[22] Wu Y et al 1996 Phys. Rev. Lett. 77 2049
[23] Koyel Bhattacharya and Das D 2008 J. Phys. D: Appl. Phys. 41 155420
[24] Grebner S et al 1993 Mater. Res. Soc. Sym. Proc. 283 513
[25] Petritz R L 1956 Phys. Rev. 104 1508
[26] Seto J Y W 1975 J. Appl. Phys. 46 5247
[27] Baccarani G et al 1978 J. Appl. Phys. 49 5565