Characterization Method of Polycrystalline Materials Using Conductive Atomic Force Microscopy
DING Xi-Dong1, FU Gang2, XIONG Xiao-Min1, ZHANG Jin-Xiu1
1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 5102752Department of Physics, Guangzhou University, Guangzhou 510405
Characterization Method of Polycrystalline Materials Using Conductive Atomic Force Microscopy
DING Xi-Dong1, FU Gang2, XIONG Xiao-Min1, ZHANG Jin-Xiu1
1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 5102752Department of Physics, Guangzhou University, Guangzhou 510405
摘要An apparatus for characterization of polycrystalline materials based on conductive atomic force microscopy (cAFM) is developed and a quantitative measurement of electrical characteristics of individual grains in polycrystalline ZnO ceramic is demonstrated. Improvement of the experimental method is presented. Experimental results illuminate unambiguously the different electrical characteristics between individual grains, suggesting the suitability and maneuverability of this method in the study of local structure or properties and their relationship in polycrystalline materials such as semi-conducting ceramics.
Abstract:An apparatus for characterization of polycrystalline materials based on conductive atomic force microscopy (cAFM) is developed and a quantitative measurement of electrical characteristics of individual grains in polycrystalline ZnO ceramic is demonstrated. Improvement of the experimental method is presented. Experimental results illuminate unambiguously the different electrical characteristics between individual grains, suggesting the suitability and maneuverability of this method in the study of local structure or properties and their relationship in polycrystalline materials such as semi-conducting ceramics.
[1] Freer R and Leach C 2004 Solid State Ionics 173 41 [2] Tao M, Ai B, Dorlanne and Loubiere A 1986 J. Appl.Phys. 61 1562. [3] Olsson E and Dunlop G L 1989 J. Appl. Phys. 663666 [4] Fleig J, Rodewald S and Maier J 2000 Solid StateIonics 136 905 [5] Wear J M R and Abraham D W 1991 J. Vac. Sci. Technol.B 9 1559 [6] Nonnenmacher M et al 1991 Appl. Phys. Lett. 58 2921 [7] De Wolf P et al 1995 J. Vac. Sci. Technol. A 13 1699 [8] De Wolf P et al 1999 Appl. Phys. Lett. 73 2155 [9] Williams C C et al 1989 Appl. Phys. Lett. 55 203 [10] Williams C C et al 1989 Appl. Phys. Lett. 55 1662 [11] Diebold A C et al 1996 J. Vac. Sci. Technol.B 14 196 [12] Kalinin S V and Bonnell D A 2001 Appl. Phys. Lett. 78 1306 [13] Kalinin S V and Bonnell D A 2002 J. Appl. Phys. 91 832 [14] Shao R, Kalinin S V and Bonnell D A 2003 Appl. Phys.Lett. 82 1869 [15] O'Hayre R, Lee M and Prinz F B 2004 J. Appl. Phys. 95 8382 [16] Layson A, Gadad S and Teeters D 2003 Electrochim.Acta 48 2207 [17] Pingree L S C et al 2005 IEEE Trans.Nanotechnol. 4 255 [18] Fumagalli L et al 2006 Nanotechnology 17 4581 [19] Pingree L S C and Hersam M C 2005 Appl. Phys. Lett. 87 233117 [20] Chung S Y, Lee S I and Choi J H 2006 Appl. Phys.Lett. 89 191907 [21] O'Hayre R et al 2004 J. Appl. Phys. 963540 [22] Pablo P J de et al 1998 Appl. Phys. Lett. 73 3300