摘要A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.
Abstract:A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.
WANG Xiao-Lan;ZHAO De-Gang;YANG Hui;LIANG Jun-Wu. Growth of AlGaN Epitaxial Film with High Al Content by Metalorganic Chemical Vapour Deposition[J]. 中国物理快报, 2007, 24(3): 774-777.
WANG Xiao-Lan, ZHAO De-Gang, YANG Hui, LIANG Jun-Wu. Growth of AlGaN Epitaxial Film with High Al Content by Metalorganic Chemical Vapour Deposition. Chin. Phys. Lett., 2007, 24(3): 774-777.
[1] Zhang J P et al%, Chitnis A, Adivarahan V, Wu S, Mandavilli V, Pachipulusu R, Sharalov%M, Simin G, Yang J W and Khan M A 2002 Appl. Phys. Lett. 81 4910 [2] Yasan A et al %, McClintock R, Mayes K, Darvish S R, Kung P and Razeghi M2002 Appl. Phys. Lett. 81 801 [3] Adivarahan V et al %, Wu S, Chitnis A, Pachipulusu R, Mandavilli V,%Shatalov M, Zhang J P, Khan M A, Tamulaitis G, Sereika A, Yilmaz I,%Shur M S and Gaska R2002 Appl. Phys. Lett. 81 3666 [4] Zhou S Q, Wu M F and Yao S D 2005 Chin. Phys. Lett. 223189 [5] Yoshida S, Misawa S and Gonda S 1982 J. Appl. Phys. 536844 [6] Koide Y et al %, Itoh H, Khan M R H, Hiramatsu K, Sawaki N and Akasaki I1987 J. Appl. Phys. 61 4540 [7] Ito K, Hiramatsu K, Amano H and Akasaki I 1990 J. CrystalGrowth 104 533 [8] Amano H et al%, Iwaya M, Hayashi N, Kashima T, Nitta S, Wetzel C and Akasaki I1999 Phys. Status Solidi B 216 683 [9] Zhou Y G et al %, Zhang R, Li W P, Shen B, Chen P, Chen Z Z, Gu S L, Shi Y,%Zheng Y D and Huang Z C2000 Mater. Lett. 45 331 [10] Wang B Z et al %, Wang X L, Hu G X, Ran J X, Wang X H, Guo L C, Xiao H L,%Li J P, Zeng Y P, LI J M and Wang Z G2006 Chin. Phys. Lett. 23 2187 [11] Kondratyev A V et al %, Talalaev R A, Lundin W V, Sakharov A V,%Tsatsul'nikov A V, Zavarin E E, Fomin A V and Sizov D S2004 J. Crystal Growth 272 420 [12] Zhao D G et al %, Zhu J J, Liu Z S, Zhang S M, Yang Hui and Jiang D S2004 Appl. Phys. Lett. 85 1499 [13] Ohba Y and Sato R 2000 J. Crystal Growth 221 258 [14] Kim S et al %, Oh J, Kang J, Kim D, Won J, Kim J W and Cho H2004 J.Crystal Growth 262 7 [15] Zhao D G et al%, Zhu J J, Jiang D S, Yang Hui, Liang J W, Li X Y and Gong H M2006 J. Crystal Growth 289 72 [16] Coltrin M E, Creighton J R and Mitchell C C 2006 J. CrystalGrowth 287 566