Properties of Strain Compensated Symmetrical Triangular Quantum Wells Composed of InGaAs/InAs Chirped Superlattice Grown Using Gas Source Molecular Beam Epitaxy
GU Yi1,2, ZHANG Yong-Gang1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 2000502Graduate School of the Chinese Academy of Sciences, Beijing 100049
Properties of Strain Compensated Symmetrical Triangular Quantum Wells Composed of InGaAs/InAs Chirped Superlattice Grown Using Gas Source Molecular Beam Epitaxy
GU Yi1,2;ZHANG Yong-Gang1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 2000502Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要We investigate the properties of symmetrical triangular quantum wells composed of InGaAs/InAs chirped superlattice, which is grown by gas source molecular beam epitaxy via digital alloy method. In the quantum well structure tensile AlInGaAs are used as barriers to partially compensate for the significant compressive strain in the wells, the strain compensation effects are confirmed by x-ray measurement. The photoluminescence spectra of the sample are dominated by the excitonic recombination peak in the whole temperature range. The thermal quenching, peak energy shift and line-width broadening of the PL spectra are analysed in detail, the mechanisms are discussed.
Abstract:We investigate the properties of symmetrical triangular quantum wells composed of InGaAs/InAs chirped superlattice, which is grown by gas source molecular beam epitaxy via digital alloy method. In the quantum well structure tensile AlInGaAs are used as barriers to partially compensate for the significant compressive strain in the wells, the strain compensation effects are confirmed by x-ray measurement. The photoluminescence spectra of the sample are dominated by the excitonic recombination peak in the whole temperature range. The thermal quenching, peak energy shift and line-width broadening of the PL spectra are analysed in detail, the mechanisms are discussed.
[1] Mattiello M et al %, Nikl\`es M, Schilt S, Th\'evenaz K, Salhi A,%Barat D, Vicet A, Rouillard Y, Werner R and Koeth J2006 Spectrochim. Acta A 63 952 [2] Jean B and Bende T 2003 Solid State Mid-infrared LaserSources ed Sorokina I T and Vodopyanov K L (Berlin: Springer) 89 511 [3] Zhang Y G, Zheng Y L, Lin C, Li A Z and Liu S 2006 Chin. Phys.Lett. 23 2262 [4] O'Brien K et al %, Sweeney S J, Adams A R, Murdin B N, Salhi A,%Rouillard Y and Joulli\'e A2006 Appl. Phys. Lett. 89 051104 [5] Kim J G, Shterengas L, Martinelli R U, Belenky G L, Garbuzov D Zand Chan W K 2002 Appl. Phys. Lett. 81 3146 [6] Forouhar S, Ksendzov A, Larsson A and Temkin H 1992 Electron.Lett. 28 1431 [7] Ochiai M, Temkin H, Forouhar S and Logan R A 1995 IEEE Photon.Tech. Lett. 7 825 [8] Mitsuhara M, Ogasawara M, Oishi M and Sugiura H 1998 Appl.Phys. Lett. 72 3106 [9]Kuang G K et al %, B\"ohm G, Grau M, R\"osel G, Meyer G and Aman M%C2000 Appl. Phys. Lett. 77 1091 [10] Seeies D et al %, Peter M, Kiefer R, Winkler K and Wagner J2001 IEEE Photon. Tech. Lett. 13 412 [11] Sato T, Mitsuhara M, Watanabe T and Kondo Y 2005 Appl. Phys.Lett. 87 211903 [12] Gu Y, Zhang Y G and Liu S 2007 Chin. Phys. Lett. 243237 [13] Droopad R et al %, Choi K Y, Puechner R A, Shiralagi K T, Gerber%D S and Maracas G N1991 Appl. Phys. Lett. 59 2308 [14] Giugni S et al %, Tansley T L, Green F, Shwe C and Gal M1992 J. Appl. Phys. 71 3486 [15] Gerber D S, Droopad R and Maracas G N 1993 Appl. Phys. Lett. 62 525 [16] Mathino D L et al %, Maracas G N, Gerber D S and Droopad R1994 J. Appl. Phys. 75 4551 [17] Lin D Y et al %, Lin F C, Huang Y S, Qiang H, Pollak F H,%Mathine D L and Maracas G N1996 J. Appl. Phys. 79 460 [18] Lin D Y, Li C F and Huang Y S 1996 Jan. J. Appl. Phys. 35 3576 [19] Chou S T 2000 J. Appl. Phys. 87 285 [20] Wohlert D E et al %, Chou S T, Chen A C, Cheng K Y and%Hsieh K C1996 Appl. Phys. Lett. 68 2386 [21] Sun Z Z et al %, Wu J, Lin F, Liu F Q, Chen Y H, Ye X L,%Jiang W H, Li Y F, Xu B and Wang Z G2000 J. Cryst. Growth 212 360 [22] Lambkin J D et al %, Considine L, Walsh S, O'Connor G M,%McDonagh C J and Glynn T J1994 Appl. Phys. Lett. 65 73 [23] Shen W Z et al %, Shen S C, Tang W G, Zhao Y and Li A Z1995 J. Appl. Phys. 78 5696 [24] Varshni Y 1967 Physica 34 149 [25] Adachi S, ed 2004 Physical Properties ofI$\!$I$\!$I--V Semiconductor Compounds: InP, InAs, GaAs GaP, InGaAsand InGaAsP (Weinheim: Wiley-VCH) p 49 [26] Goldberg Y A and Schmidt N M 1999 Handbook Series onSemiconductor Parameters ed Levinshtein M, Rumyantsev S and Shur M(Singapore, World Scientific) vol 2 p 67 [27] Lei H P et al %, Wu H Z, Lao Y F, Qi M, Li A Z and Shen W Z2003 J. Cryst. Growth 256 96