Enhanced Electroluminescent Efficiency Based on Functionalized Europium Complexes in Polymer Light-Emitting Diodes
ZHANG Yong, WANG Lei, LI Chun, ZENG Wen-Jin, SHI Hua-Hong, CAO Yong
Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials (Ministry of Education), South China University of Technology, Guangzhou 510640
Enhanced Electroluminescent Efficiency Based on Functionalized Europium Complexes in Polymer Light-Emitting Diodes
Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials (Ministry of Education), South China University of Technology, Guangzhou 510640
摘要Efficient red polymer light-emitting diodes are fabricated with the single active layer from the blends of poly(N-vinylcarbazole) (PVK) in the presence of 30wt.% electron-transporting compound 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and europium complexes. The polyphenylene functionalized europium complex shows an enhanced electroluminescent efficiency due to the large site-isolation effect. For the polyphenylene functionalized europium complex, the maximum external quantum efficiency of 1.90% and luminous efficiency of 2.01cd A-1 are achieved with emission peak at 612nm. The maximum brightness is more than 300cd m-2.
Abstract:Efficient red polymer light-emitting diodes are fabricated with the single active layer from the blends of poly(N-vinylcarbazole) (PVK) in the presence of 30wt.% electron-transporting compound 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and europium complexes. The polyphenylene functionalized europium complex shows an enhanced electroluminescent efficiency due to the large site-isolation effect. For the polyphenylene functionalized europium complex, the maximum external quantum efficiency of 1.90% and luminous efficiency of 2.01cd A-1 are achieved with emission peak at 612nm. The maximum brightness is more than 300cd m-2.
[1] Kido J and Okamoto Y 2002 Chem. Rev. 102 2357 [2] Heil H, Steiger J, Schmechel R and Seggem H 2001 J. Appl.Phys. 90 5357 [3] Segal M, Baldo M A, Holmes R J, Forrest S R and Soos Z G 2003 Phys. Rev. B 68 075211 [4] Adichi C, Baldo M A and Forrest S R 2000 J. Appl. Phys. 87 8049 [5] Sun P P, Duan J P, Lih J J and Cheng C H 2003 Adv. Funct.Mater. 13 683 [6] Xin H, Li F Y, Shi M, Bian Z Q and Huang C H 2003 J. Am. Chem.Soc. 125 7166 [7] Sun M, Xin H, Wang K Z, Zhang Y A, Jin L P and Huang C H 2003Chem. Commun. 702 [8] Liang F S, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B and WangF S 2003 Chem. Mater. 15 1935 [9] Zhang Y, Shi H H, Ke Y and Cao Y 2007 J. Lumin. 124 51 [10] Canzler T W and Kido J 2006 Org. Electron. 7 29 [11] McGehee M G, Bergstdt T, Zhang C, Saab A P, O'Regan M B, Bazan GC, Srdanov V I and Heeger A J 1999 Adv. Mater. 11 1349 [12] Male N A H, Salata O V and Christou V 2002 Synth. Met. 126 7 [13] Zhang F J, Xu Z, Lv Y G, Zhang J C, Zhao S L, Huang J Z, Wang Y,Yuan G C, Zhao D W and Xu X R 2006 Eur. Phys. J. B 52 245 [14] Dexter D L 1953 J. Chem. Phys. 21 836 [15] F\"orster T 1959 Discus. Faraday Soc. 27 7 [16] Jiang J X, Jiang C Y, Yang W, Zhen H Y, Huang F and Cao Y 2005Macromolecules 38 4072 [17] Gong X, Ostrowski J C, Moses D, Bazan G C and Heeger A J 2003 Adv. Funct. Mater. 13 439 [18] Robinson M R, Ostrowski J C, Bazan G C and McGehee M D 2003 Adv. Mater. 15 1547