Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes
Sheng Cao, Xiao-Ming Wu** , Jun-Lin Liu, Feng-Yi Jiang
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330096
Abstract :Phonon sidebands in the electrolumiescence (EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing (ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K. The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above 200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states: (i) carrier relaxation from shallow into deep localization states, (ii) band filling of shallow and deep localization states, and (iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature. The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.
收稿日期: 2018-08-16
出版日期: 2019-01-22
:
85.60.Dw
(Photodiodes; phototransistors; photoresistors)
78.60.Fi
(Electroluminescence)
78.67.De
(Quantum wells)
71.38.-k
(Polarons and electron-phonon interactions)
[1] Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. Part. 2 34 L797 [2] Zhang J, Xiong C, Liu J, Quan Z, Wang L and Jiang F 2014 Appl. Phys. A 114 1049 [3] Chichibu S, Azuhata T, Sota T and Nakamura S 1996 Appl. Phys. Lett. 69 4188 [4] Chichibu S, Sota T, Wada K and Nakamura S 1998 J. Vac. Sci. Technol. B 16 2204 [5] Nakamura S 1998 Science 281 956 [6] Hopfield J J 1959 J. Phys. Chem. Solids 10 110 [7] Segall B and Mahan G D 1968 Phys. Rev. 171 935 [8] Smith M, Lin J Y, Jiang H X, Salvador A, Botchkarev A, Kim W and Morkoc H 1996 Appl. Phys. Lett. 69 2453 [9] Smith M, Lin J Y, Jiang H X, Khan A, Chen Q, Salvador A, Botchkarev A, Kim W and Morkoc H 1997 Appl. Phys. Lett. 70 2882 [10] Zhang X B, Taliercio T, Kolliakos S and Lefebvre P 2001 J. Phys.: Condens. Matter 13 7053 [11] Brener I, Olszakier M, Cohen E, Ehrenfreund E, Ron A and Pfeiffer L 1992 Phys. Rev. B 46 7927 [12] Xu S J, Liu W and Li M F 2000 Appl. Phys. Lett. 77 3376 [13] Xu S J, Li G Q, Xiong S J, Tong S Y, Che C M, Liu W and Li M F 2005 J. Chem. Phys. 122 244712 [14] Xu S J, Li G Q, Xiong S J and Che C M 2006 J. Appl. Phys. 99 073508 [15] Song D Y, Basavaraj M, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2006 J. Appl. Phys. 100 113504 [16] Pecharromán-Gallego R, Edwards P R, Martin R W and Watson I M 2002 Mater. Sci. Eng. B 93 94 [17] Tan L T, Martin R W, O'Donnell K P and Watson I M 2006 Appl. Phys. Lett. 89 101910 [18] Olaizola S M, Fan W H, Mowbray D J, Skolnick M S, Parbrook P J and Fox A M 2007 Superlattices Microstruct. 41 419 [19] Chen D, Luo Y, Wang L, Li H, Xi G, Jiang Y, Hao Z, Sun C and Han Y 2007 J. Appl. Phys. 101 053712 [20] Renwick P, Tang H, Bai J and Wang T 2012 Appl. Phys. Lett. 100 182105 [21] Mo C, Fang W, Pu Y, Liu H and Jiang F 2005 J. Cryst. Growth 285 312 [22] Xiong C, Jiang F, Fang W, Wang L, Mo C and Liu H 2007 J. Lumin. 122 185 [23] Wu X, Liu J, Xiong C, Zhang J, Quan Z, Mao Q and Jiang F 2013 J. Appl. Phys. 114 103102 [24] Agranovich V M and Maradudin A A 1982 Excitons (Amsterdam: North-Holland Publishing Company) vol 2 chap 5 p 177 [25] Cho Y H , Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370 [26] Feng S W , Cheng Y C , Chung Y Y , Yang C C, Lin Y S , Hsu C, Ma K J and Chyi J I 2002 J. Appl. Phys. 92 4441 [27] Lin T, Kuo H C, Jiang X D and Feng Z C 2017 Nanoscale Res. Lett. 12 137 [28] Mowbray D J, Kowalski O P, Skolnick M S, Hopkinson M and David J P R 1994 Superlattices Microstruct. 15 313
[1]
. [J]. 中国物理快报, 2022, 39(6): 68501-.
[2]
. [J]. 中国物理快报, 0, (): 68502-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 68502-.
[4]
. [J]. 中国物理快报, 2019, 36(10): 108501-.
[5]
. [J]. 中国物理快报, 2018, 35(11): 114204-.
[6]
. [J]. 中国物理快报, 2018, 35(9): 98501-.
[7]
. [J]. 中国物理快报, 2018, 35(7): 74201-.
[8]
. [J]. 中国物理快报, 2017, 34(1): 18502-018502.
[9]
. [J]. 中国物理快报, 2016, 33(08): 88501-088501.
[10]
. [J]. 中国物理快报, 2015, 32(12): 128501-128501.
[11]
. [J]. 中国物理快报, 2015, 32(08): 88503-088503.
[12]
. [J]. 中国物理快报, 2014, 31(05): 58502-058502.
[13]
. [J]. 中国物理快报, 2013, 30(9): 97304-097304.
[14]
. [J]. Chin. Phys. Lett., 2013, 30(3): 37803-037803.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(3): 38501-038501.