1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 2Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 3University of Chinese Academy of Sciences, Beijing 100049
Abstract:High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9-one-10,10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encapsulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.7 lm/W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the 10 wt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LT50) of 80 h, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium(III) (Ir(ppy)$_{3}$). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz.