Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode
Guang-Yue Shen1 , Tian-Xiang Zheng1 , Bing-Cheng Du1 , Yang Lv1 , E Wu1 , Zhao-Hui Li1** , Guang Wu1,2**
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 2000622 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006
Abstract :Large field-of-view (FoV) three-dimensional (3D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens (CL) before the detector, the FoV is expanded to $\pm $10$^{\circ}$. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity.
收稿日期: 2018-08-06
出版日期: 2018-10-23
:
42.68.Wt
(Remote sensing; LIDAR and adaptive systems)
42.30.Wb
(Image reconstruction; tomography)
42.79.Pw
(Imaging detectors and sensors)
85.60.Dw
(Photodiodes; phototransistors; photoresistors)
引用本文:
. [J]. 中国物理快报, 2018, 35(11): 114204-.
Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode. Chin. Phys. Lett., 2018, 35(11): 114204-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/35/11/114204
或
https://cpl.iphy.ac.cn/CN/Y2018/V35/I11/114204
[1] Podgórski J, Pȩtlicki M and Kinnard C 2018 Cold Reg. Sci. Technol. 151 288 [2] Schwarz B 2010 Nat. Photon. 4 429 [3] Swatantran A, Tang H, Barrett T, DeCola P and Dubayah R 2016 Sci. Rep. 6 28277 [4] Tarolli P 2014 Geomorphology 216 295 [5] Halimi A, Maccarone A, McCarthy A, McLaughlin S and Buller G S 2017 IEEE Trans. Comput. Imag. 3 472 [6] Maccarone A, McCarthy A, Ren X, Warburton R E, Wallace A M, Moffat J, Petillot Y and Buller G S 2015 Opt. Express 23 33911 [7] Pierzchała M, Giguère P and Astrup R 2018 Comput. Electron. Agr. 145 217 [8] Liang W, Zhang Y and Wang J 2017 IFAC PapersOnLine 50 276 [9] Wang H, Wang B, Liu B, Meng X and Yang G 2017 Robot. Auton. Syst. 88 71 [10] Broggi A, Grisleri P and Zani P 2013 Int. IEEE Conf. Intelligent Transportation Syst. p 887 [11] McCarthy A, Collins R J, Krichel N J, Fernández V, Wallace A M and Buller G S 2009 Appl. Opt. 48 6241 [12] Henriksson M, Larsson H, Grönwall C and Tolt G 2016 Opt. Eng. 56 031204 [13] Pawlikowska A M, Halimi A, Lamb R A and Buller G S 2017 Opt. Express 25 11919 [14] Tobin R, Halimi A, McCarthy A, Ren X, McEwan K, Stephen M and Buller G S 2017 Opt. Eng. 57 031303 [15] Chen S, Liu D, Zhang W, You L, He Y, Zhang W, Yang X, Wu G, Ren M, Zeng H, Wang Z, Xie X and Jiang M 2013 Appl. Opt. 52 3241 [16] Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z and Xie X 2015 Opt. Express 23 14603 [17] Cui Z, Tian Z, Zhang Y, Bi Z and Fu S 2018 Optik 157 768 [18] Sun M J, Edgar M P, Gibson G M, Sun B, Radwell N, Lamb R and Padgett M J 2016 Nat. Commun. 7 12010 [19] Li Z, Wu E, Pang C, Du B, Tao Y, Peng H, Zeng H and Wu G 2017 Opt. Express 25 10189 [20] Peng H, Wang Y R, Meng W D, Yan P Q, Li Z H, Li C, Pan H F and Wu G 2018 Optoelectron. Lett. 14 0129 [21] Xu L, Zhang Y, Zhang Y, Wu L, Yang C, Yang X, Zhang Z and Zhao Y 2017 Appl. Opt. 56 3059 [22] McCarthy A, Ren X, Della Frera A, Gemmell N R, Krichel N J, Scarcella C, Ruggeri A, Tosi A and Buller G S 2013 Opt. Express 21 22098 [23] Niclass C, Soga M, Matsubara H, Kato S and Kagami M 2013 IEEE J. Solid-State Circuits 48 559 [24] Ren X, Connolly P W R, Halimi A, Altmann Y, McLaughlin S, Gyongy I, Henderson R K and Buller G S 2018 Opt. Express 26 5541 [25] Krstajic N, Pol, S, Levitt J, Walker R, Erdogan A, Ameer-Beg S and Henderson R K 2015 Opt. Lett. 40 4305 [26] Jahromi S, Jansson J P and Kostamovaara J 2016 Opt. Express 24 21619 [27] Gyongy I, Calder N, Davies A, Dutton N A W, Dalgarno P, Duncan R, Rickman C and Henderson R K 2018 IEEE Trans. Electron Devices 65 547 [28] Sara P, Gerald S B, Jason M S, Andrew M W and Sergio C 2000 Meas. Sci. Technol. 11 712
[1]
. [J]. 中国物理快报, 2019, 36(9): 94201-.
[2]
. [J]. 中国物理快报, 2017, 34(7): 74203-.
[3]
. [J]. 中国物理快报, 2014, 31(09): 94205-094205.
[4]
TANG Lei**;WANG Cong-Rong;WU Hai-Bin;DONG Ji-Hui. Rayleigh Doppler Lidar for Higher Tropospheric and Stratospheric Wind Observation [J]. 中国物理快报, 2012, 29(1): 14213-014213.
[5]
REN Zhi-Jun;LIANG Xiao-Yan**;YU Liang-Hong;LU Xiao-Ming;LENG Yu-Xin;LI Ru-Xin**;XU Zhi-Zhan**
. Efficient Spherical Wavefront Correction near the Focus for the 0.89PW/29.0fs Ti:Sapphire Laser Beam [J]. 中国物理快报, 2011, 28(2): 24201-024201.
[6]
TANG Lei**;WANG Yong-Tao;SHU Zhi-Feng;DONG Ji-Hui;WANG Guo-Cheng;XU Wen-Jing;HU Dong-Dong;CHEN Ting-Di;DOU Xian-Kang;SUN Dong-Song;CHA Hyunki. Analysis of Detectors and Transmission Curve Correction of Mobile Rayleigh Doppler Wind Lidar [J]. 中国物理快报, 2010, 27(11): 114207-114207.
[7]
REN Zhi-Jun;LIANG Xiao-Yan;LIU Mei-Biao;XIA Chang-Quan;LU Xiao-Ming;LI Ru-Xin;XU Zhi-Zhan. Wavefront Correction of Pettawat Laser System by a Deformable Mirror with 50mm Active Aperture [J]. 中国物理快报, 2009, 26(12): 124203-124203.
[8]
SUN Bao;CHEN Fu-Shen. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors [J]. 中国物理快报, 2009, 26(2): 24212-024212.
[9]
ZHANG Ling;ZHANG Chun-Yu;LI De-Hua;WEI Zhi-Yi;ZHANG Zhi-Guo;Hans J. Eichler;Stephan Strohmaier. Characteristics of Nd:YGG Laser Operating at 4 F 3/2 -4 I 9/2 [J]. 中国物理快报, 2008, 25(11): 3988-3990.
[10]
CAO Zhao-Liang;MU Quan-Quan;HU Li-Fa;LIU Yong-Gang;PENG Zeng-Hui;XUAN Li. High Closed Loop Correction Accuracy with a Liquid Crystal Wavefront Corrector [J]. 中国物理快报, 2008, 25(3): 989-992.
[11]
YANG Yong-Jun;CHEN Fu-Shen;SUN Bao. An Isotropic Electric-Field Sensing System Using Optical Probe [J]. 中国物理快报, 2007, 24(4): 965-967.