A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode
Lai Wang1** , Xiao Meng1 , Jung-Hoon Song2 , Tae-Soo Kim2 , Seung-Young Lim2 , Zhi-Biao Hao1 , Yi Luo1 , Chang-Zheng Sun1 , Yan-Jun Han1 , Bing Xiong1 , Jian Wang1 , Hong-Tao Li1
1 Tsinghua National Laboratory on Information Science and Technology, and Department of Electronic Engineering, Tsinghua University, Beijing 1000842 Department of Physics, Kongju National University, Kongju 314701, South Korea
Abstract :We propose and demonstrate to derive the Auger recombination coefficient by fitting efficiency–current and carrier lifetime–current curves simultaneously, which can minimize the uncertainty of fitting results. The obtained Auger recombination coefficient is $1.0\times10^{-31}$ cm$^{6}$s$^{-1}$ in the present sample, which contributes slightly to efficiency droop effect.
收稿日期: 2016-10-08
出版日期: 2016-12-29
:
73.21.Fg
(Quantum wells)
73.40.Kp
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
78.60.Fi
(Electroluminescence)
引用本文:
. [J]. 中国物理快报, 2017, 34(1): 17301-017301.
Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode. Chin. Phys. Lett., 2017, 34(1): 17301-017301.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/1/017301
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I1/17301
[1] Schubert E F 2003 Light-Emitting Diodes (New York: Cambridge University Press) p 39 [2] Iveland J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406 [3] Piprek J 2010 Phys. Status Solidi A 207 2217 [4] Hader J, Moloney J V, Pasenow B, Koch S W, Sabathil M, Linder N and Lutgen S 2008 Appl. Phys. Lett. 92 261103 [5] Bertazzi F, Goano M and Bellotti E 2010 Appl. Phys. Lett. 97 231118 [6] Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101 [7] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101 [8] Delaney K T, Rinke P and van de Walle C G 2009 Appl. Phys. Lett. 94 191109 [9] Kioupakis E, Rinke P, Delaney K T and van de Walle C G 2011 Appl. Phys. Lett. 98 161107 [10] Liu Z, Wei T, Guo E, Yi X, Wang L, Wang J, Wang G, Shi Y, Ferguson I and Li J 2011 Appl. Phys. Lett. 99 091104 [11] David A and Grundmann M J 2010 Appl. Phys. Lett. 96 103504 [12] Zhang M, Bhattacharya P, Singh J and Hinckley J 2009 Appl. Phys. Lett. 95 201108 [13] Laubsch A, Sabathil M, Baur J, Peter M and Hahn B 2010 IEEE Trans. Electron Devices 57 79 [14] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 [15] Dai Q Shan Q Wang J Chhajed S Cho J Schubert E F, Crawford M H, Koleske D D, Kim M H and Park Y 2010 Appl. Phys. Lett. 97 133507 [16] Meng X, Wang L, Hao Z, Sun C, Han Y, Xiong B, Wang J and Li H 2016 Appl. Phys. Lett. 108 013501 [17] Oh N C, Lee J G, Dong Y, Kim T S, Yu H J and Song J H 2015 Curr. Appl. Phys. 15 S7 [18] Wang J, Wang L, Wang L, Hao Z, Luo Y, Dempewolf A, Müller M, Bertram F and Christen J 2012 J. Appl. Phys. 112 023107
[1]
. [J]. 中国物理快报, 2020, 37(2): 27302-.
[2]
. [J]. 中国物理快报, 2019, 36(6): 67801-.
[3]
. [J]. 中国物理快报, 2019, 36(5): 57301-.
[4]
. [J]. 中国物理快报, 2018, 35(8): 87302-.
[5]
. [J]. 中国物理快报, 2018, 35(5): 57303-.
[6]
. [J]. 中国物理快报, 2018, 35(2): 27301-.
[7]
. [J]. 中国物理快报, 2016, 33(02): 27301-027301.
[8]
. [J]. 中国物理快报, 2016, 33(02): 27303-027303.
[9]
. [J]. 中国物理快报, 2015, 32(07): 77204-077204.
[10]
. [J]. 中国物理快报, 2015, 32(06): 67301-067301.
[11]
. [J]. 中国物理快报, 2015, 32(06): 68102-068102.
[12]
. [J]. 中国物理快报, 2014, 31(12): 127301-127301.
[13]
. [J]. 中国物理快报, 2014, 31(03): 37301-037301.
[14]
. [J]. 中国物理快报, 2012, 29(9): 97204-097204.
[15]
. [J]. 中国物理快报, 2012, 29(9): 97304-097304.