Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes
CHEN Jian, XU Huai-Zhe**
State Key Laboratory of Software Development Environment and Department of Physics, Beihang University, Beijing 100191
Abstract :We study theoretically the plasmon excitations in a two-dimensional electron gas (2DEG) with spin-orbit interactions (SOIs) embedded in a (11n ) crystallographic plane. We demonstrate that the energy spectra and dielectric functions between the 2DEGs embedded in different crystallographic planes can be related by a unitary transformation. Using the unitary transformation, we find that the anisotropy of plasmon excitations and the directional plasmon filtering (DPF) can be tuned by changing the strengths of SOIs in the high-index planes. There are two advantageous directions [11 0] and [nn 2 ] for plasmon propagation. Moreover, the anisotropy and the DPF can be smeared out by tuning the strength ratio α /β between the Rashba SOI and the Dresselhaus SOI.
收稿日期: 2013-09-06
出版日期: 2014-02-28
:
73.20.Mf
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
72.25.Dc
(Spin polarized transport in semiconductors)
73.21.Fg
(Quantum wells)
[1] ?uti? I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Averkiev N S and Golub L E 1999 Phys. Rev. B 60 15582 [3] Yu Z G and Krishnamurthy S 2005 Phys. Rev. B 71 245312 [4] Li J, Yang W and Chang K 2009 Phys. Rev. B 80 035303 [5] Li J, Chang K and Peeters F M 2009 Phys. Rev. B 80 153307 [6] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [7] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204 [8] Yang W and Chang K 2008 Phys. Rev. Lett. 100 056602 [9] Bychkov Yu A and Rashba é I 1984 JETP Lett. 39 78 [10] Dresselhaus G 1955 Phys. Rev. 100 580 [11] D'yakonov M I and Kachorovskii V Yu 1986 Sov. Phys. Semicond. 20 110 [12] R?ssler U 1989 High Magnetic Fields Semiconductor Physics II (Berlin Heidelberg: Springer-Verlag) p 376 [13] Sheng J S and Chang K 2006 Phys. Rev. B 74 235315 [14] Stano P and Fabian J 2006 Phys. Rev. Lett. 96 186602 [15] Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J and Weiss D 2007 Phys. Rev. Lett. 99 056601 [16] Badalyan S M, Matos-Abiague A, Vignale G and Fabian J 2009 Phys. Rev. B 79 205305 [17] Ullrich C A and Flatte M E 2003 Phys. Rev. B 68 235310 [18] Li C and Wu X G 2008 Appl. Phys. Lett. 93 251501 [19] Das B, Miller D C and Datta S 1989 Phys. Rev. B 39 1411 [20] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, DeBoeck J, Borghs G, Wegscheider W, Weiss D and Prettl W 2004 Phys. Rev. Lett. 92 256601 [21] Yang W and Chang K 2006 Phys. Rev. B 73 113303 [22] Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl Ch, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327 [23] Eppenga R and Schuurmans M F H 1988 Phys. Rev. B 37 10923 [24] Pikus F G and Pikus G E 1995 Phys. Rev. B 51 16928 [25] Averkiev N S, Golub L E and Willander M 2002 J. Phys.: Condens. Matter 14 R271 [26] Tudorovskiy T and Averkiev N S 2002 JETP Lett. 75 552 [27] Wang M, Chang K, Wang L G, Dai N and Peeters F M 2009 Nanotechnology 20 365202 [28] Pletyukhov M and Gritsev V 2006 Phys. Rev. B 74 045307
[1]
. [J]. 中国物理快报, 2023, 40(3): 37502-.
[2]
. [J]. 中国物理快报, 2023, 40(1): 17801-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 97301-.
[4]
. [J]. 中国物理快报, 2022, 39(5): 58501-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 87701-.
[6]
. [J]. 中国物理快报, 2021, 38(2): 23301-.
[7]
. [J]. 中国物理快报, 2020, 37(11): 114201-.
[8]
. [J]. 中国物理快报, 2019, 36(10): 107301-.
[9]
. [J]. 中国物理快报, 2019, 36(6): 64202-.
[10]
. [J]. 中国物理快报, 2017, 34(9): 96801-.
[11]
. [J]. 中国物理快报, 2017, 34(8): 89901-.
[12]
. [J]. 中国物理快报, 2017, 34(5): 57501-.
[13]
. [J]. 中国物理快报, 2016, 33(12): 123601-123601.
[14]
. [J]. 中国物理快报, 2016, 33(08): 87303-087303.
[15]
. [J]. 中国物理快报, 2016, 33(02): 26802-026802.