FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Time Transfer in a 1839-km Telecommunication Fiber Link Demonstrating a Picosecond-Scale Stability |
Xinxing Guo1,2†, Bing'an Hou3†, Bo Liu1,2, Fan Yang3, Weicheng Kong1,2, Tao Liu1,2,4*, Ruifang Dong1,2,4*, and Shougang Zhang1,2,4* |
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China 3Sichuan Taifu Ground Beidou Technology Co., Ltd, Chengdu 610093, China 4Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Xinxing Guo, Bing'an Hou, Bo Liu et al 2024 Chin. Phys. Lett. 41 064202 |
|
|
Abstract An implementation of high-precision time transfer over a 1839-km field fiber loop back link between two provincial capitals of China, Xi'an and Taiyuan, is reported. Time transfer stabilities of 6.5 ps at averaging time of 1 s and 4.6 ps at 40000 s were achieved. The uncertainty for the time transfer system was evaluated, showing a budget of 56.2 ps. These results stand for a significant milestone in achieving high-precision time transfer over a field fiber link spanning thousands of kilometers, signifying a record-breaking achievement for the real-field time transfer in both stability and distance, which paves the way for constructing the nationwide high-precision time service via fiber network.
|
|
Received: 14 February 2024
Published: 20 June 2024
|
|
PACS: |
07.60.Vg
|
(Fiber-optic instruments)
|
|
06.30.-k
|
(Measurements common to several branches of physics and astronomy)
|
|
42.81.Uv
|
(Fiber networks)
|
|
06.30.Ft
|
(Time and frequency)
|
|
|
|
|
[1] | Swallows M D, Bishof M, Lin Y G, Blatt S, Martin M J, Rey A M, and Ye J 2011 Science 331 1043 |
[2] | Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, and Oates C W 2012 Phys. Rev. Lett. 108 153002 |
[3] | Yin M J, Lu X T, Li T, Xia J J, Wang T, Zhang X F, and Chang H 2022 Phys. Rev. Lett. 128 073603 |
[4] | Lopez O, Kanj A, Pottie P E, Rovera D, Achkar J, Chardonnet C, Amy-Klein A, and Santarelli G 2013 Appl. Phys. B 110 3 |
[5] | Cheng H H, Wu G L, Zuo F X, Hu L, and Chen J P 2019 Opt. Lett. 44 5206 |
[6] | Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, and Lipiński M 2013 Metrologia 50 133 |
[7] | Rost M, Piester D, Yang W, Feldmann T, Wübbena T, and Bauch A 2012 Metrologia 49 772 |
[8] | Krehlik P, Sliwczynski Ł, Buczek Ł, and Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844 |
[9] | Zhang H, Wu G L, Li H W, Li X W, and Chen J P 2016 IEEE Photonics J. 8 7804408 |
[10] | Zhang C L, Li Y, Chen X et al. 2021 IEEE Photonics J. 13 3100106 |
[11] | Zang Q, Quan H L, Zhao K et al. 2021 Photonics 8 325 |
[12] | Wang L, Liu Y, Jiao W H, Hu L, Chen J P, and Wu G L 2022 Opt. Express 30 25522 |
[13] | Guo X X, Qiu Y F, Liu B et al. 2022 Appl. Sci. 12 6643 |
[14] | Kodet J, Pánek P, and Procházka I 2016 Metrologia 53 18 |
[15] | Guo X X, Liu B, Kong W C et al. 2023 Front. Phys. 10 1080966 |
[16] | Zhang H, Wu G L, Hu L et al. 2015 IEEE Photonics J. 7 1 |
[17] | Liu B, Guo X X, Kong W C et al. 2022 Photonics 9 522 |
[18] | Lopez O, Haboucha A, Chanteau B et al. 2012 Opt. Express 20 23518 |
[19] | Liu Q, Chen W, Xu D et al. 2015 Chin. Opt. Lett. 13 110601 |
[20] | Zuo F X, Li Q, Xie K F, Hu L, Chen J P, and Wu G L 2022 Opt. Lett. 47 1005 |
[21] | Chen F X, Zhao K, Li B et al. 2021 Acta Phys. Sin. 70 070702 (in Chinese) |
[22] | Zuo F X, Chen Z F, Hu L et al. 2020 IEEE Access 8 114656 |
[23] | Śliwczyński Ł, Krehlik P, and Lipiński M 2010 Meas. Sci. Technol. 21 075302 |
[24] | André P S and Pinto A N 2005 Opt. Commun. 246 303 |
[25] | Zhang H, Wu G L, Li X W, and Chen J P 2017 Metrologia 54 94 |
[26] | Hong H B, Quan R N, Xiang X et al. 2024 J. Lightwave Technol. 42 1479 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|