Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 066101    DOI: 10.1088/0256-307X/41/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Interatomic Interaction Models for Magnetic Materials: Recent Advances
Tatiana S. Kostiuchenko1, Alexander V. Shapeev2, and Ivan S. Novikov1*
1Emanuel Institute of Biochemical Physics RAS, 4 Kosygin Street, Moscow, 119334, Russian Federation
2Independent investigator
Cite this article:   
Tatiana S. Kostiuchenko, Alexander V. Shapeev, and Ivan S. Novikov 2024 Chin. Phys. Lett. 41 066101
Download: PDF(3639KB)   PDF(mobile)(3685KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Atomistic modeling is a widely employed theoretical method of computational materials science. It has found particular utility in the study of magnetic materials. Initially, magnetic empirical interatomic potentials or spin-polarized density functional theory (DFT) served as the primary models for describing interatomic interactions in atomistic simulations of magnetic systems. Furthermore, in recent years, a new class of interatomic potentials known as magnetic machine-learning interatomic potentials (magnetic MLIPs) has emerged. These MLIPs combine the computational efficiency, in terms of CPU time, of empirical potentials with the accuracy of DFT calculations. In this review, our focus lies on providing a comprehensive summary of the interatomic interaction models developed specifically for investigating magnetic materials. We also delve into the various problem classes to which these models can be applied. Finally, we offer insights into the future prospects of interatomic interaction model development for the exploration of magnetic materials.
Received: 13 March 2024      Review Published: 20 June 2024
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  75.47.Lx (Magnetic oxides)  
  75.47.Np (Metals and alloys)  
  82.20.Wt (Computational modeling; simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/066101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tatiana S. Kostiuchenko
Alexander V. Shapeev
and Ivan S. Novikov
[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[4] Tersoff J 1988 Phys. Rev. B 37 6991
[5] van Duin A C T, Dasgupta S, Lorant F, and Goddard W A 2001 J. Phys. Chem. A 105 9396
[6] Heisenberg W 1985 Zur Theorie des Ferromagnetismus (Berlin: Springer) p 580
[7] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[8] Ising E 1925 Z. Phys. 31 253
[9] Peierls R 1936 Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge: Cambridge University Press) 32 p 477
[10] Elden A A A and Ponmurugan M 2022 Eur. Phys. J. Plus 137 529
[11] Benyoussef S, EL-Amraoui Y, Ez-Zahraouy H, Mezzane D, Kutnjak Z, Luk'yanchuk I A, and EL-Marssi M 2020 Phys. Scr. 95 045803
[12]Nowak U 2007 Classical Spin Models (New York: John Wiley & Sons Ltd)
[13]Landau L D and Lifshitz E M 2013 Course of Theoretical Physics (Amsterdam: Elsevier) 9
[14] MacLaren J M, Schulthess T C, Butler W H, Sutton R, and McHenry M 1999 J. Appl. Phys. 85 4833
[15] Ma P W and Dudarev S L 2012 Phys. Rev. B 86 054416
[16] Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. A 240 599
[17] Derlet P M 2012 Phys. Rev. B 85 174431
[18] Domina M, Cobelli M, and Sanvito S 2022 Phys. Rev. B 105 214439
[19] Rosengaard N M and Johansson B 1997 Phys. Rev. B 55 14975
[20] Dudarev S L and Derlet P M 2005 J. Phys.: Condens. Matter 17 7097
[21] Chiesa S, Derlet P M, Dudarev S L, and van Swygenhoven H 2011 J. Phys.: Condens. Matter 23 206001
[22] Mrovec M, Nguyen-Manh D, Elsässer C, and Gumbsch P 2011 Phys. Rev. Lett. 106 246402
[23] Mrovec M, Nguyen-Manh D, Pettifor D G, and Vitek V 2004 Phys. Rev. B 69 094115
[24] Egorov A, Subramanyam A P A, Yuan Z Y, Drautz R, and Hammerschmidt T 2023 Phys. Rev. Mater. 7 044403
[25] Friák M, Šob M, and Vitek V 2001 Phys. Rev. B 63 052405
[26] Friák M and Šob M 2008 Phys. Rev. B 77 174117
[27] Li K M, Fu C C, and Schneider A 2021 Phys. Rev. B 104 104406
[28] Li K M, Fu C C, Nastar M, Soisson F, and Lavrentiev M Y 2022 Phys. Rev. B 106 024106
[29] Saunders N and Miodownik P (eds) 1998 CALPHAD: Calculation of Phase Diagrams—A Comprehensive Guide. In: Pergamon Materials Series (Amsterdam: Elsevier) vol 1 pp 1–479
[30] Xu C S, Yu H Y, Wang J L, and Xiang H J 2024 Annu. Rev. Condens. Matter Phys. 15 85
[31] Becke A D 1988 Phys. Rev. A 38 3098
[32] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Perdew J P, Kurth S, Zupan A, and Blaha P 1999 Phys. Rev. Lett. 82 2544
[34] Sun J W, Ruzsinszky A, and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[35] Becke A D 1993 J. Chem. Phys. 98 1372
[36] Stephens P J, Devlin F J, Chabalowski C F, and Frisch M J 1994 J. Phys. Chem. 98 11623
[37] Perdew J P, Ernzerhof M, and Burke K 1996 J. Chem. Phys. 105 9982
[38] Constantin L A, Perdew J P, and Pitarke J M 2009 Phys. Rev. B 79 075126
[39] Krukau A V, Vydrov O A, Izmaylov A F, and Scuseria G E 2006 J. Chem. Phys. 125 224106
[40] Schimka L, Harl J, and Kresse G 2011 J. Chem. Phys. 134 024116
[41] Calais J L 1993 Int. J. Quantum Chem. 47 101
[42] Jacob C R and Reiher M 2012 Int. J. Quantum Chem. 112 3661
[43] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[44] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[45] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[46] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[47] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F et al. 2002 Comput. Mater. Sci. 25 478
[48] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I et al. 2009 J. Phys.: Condens. Matter 21 395502
[49] Körmann F, Dick A, Grabowski B, Hickel T, and Neugebauer J 2012 Phys. Rev. B 85 125104
[50] Körmann F, Grabowski B, Dutta B, Hickel T, Mauger L, Fultz B, and Neugebauer J 2014 Phys. Rev. Lett. 113 165503
[51] Leonov I, Poteryaev A I, Anisimov V I, and Vollhardt D 2012 Phys. Rev. B 85 020401
[52] Versteylen C D, van Dijk N H, and Sluiter M H F 2017 Phys. Rev. B 96 094105
[53] Klaver T P C, Drautz R, and Finnis M W 2006 Phys. Rev. B 74 094435
[54] Díaz-Ortiz A, Drautz R, Fähnle M, Dosch H, and Sanchez J M 2006 Phys. Rev. B 73 224208
[55] Zhou L, Körmann F, Holec D, Bartosik M, Grabowski B, Neugebauer J, and Mayrhofer P H 2014 Phys. Rev. B 90 184102
[56] Ikeda Y, Grabowski B, and Körmann F 2019 Mater. Charact. 147 464
[57] Bartók A P, Payne M C, Kondor R, and Csányi G 2010 Phys. Rev. Lett. 104 136403
[58] Thompson A P, Swiler L P, Trott C R, Foiles S M, and Tucker G J 2015 J. Comput. Phys. 285 316
[59] Shapeev A V 2016 Multiscale Modeling & Simulation 14 1153
[60] Drautz R 2019 Phys. Rev. B 99 014104
[61] Wang H, Zhang L F, Han J Q, and E W N 2018 Comput. Phys. Commun. 228 178
[62] Pun G P P, Batra R, Ramprasad R, and Mishin Y 2019 Nat. Commun. 10 2339
[63] Batzner S, Musaelian A, Sun L X, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, and Kozinsky B 2022 Nat. Commun. 13 2453
[64] Dragoni D, Daff T D, Csányi G, and Marzari N 2018 Phys. Rev. Mater. 2 013808
[65] Nikolov S, Wood M A, Cangi A et al. 2021 npj Comput. Mater. 7 153
[66] Evans R F L, Atxitia U, and Chantrell R W 2015 Phys. Rev. B 91 144425
[67] Chapman J B J and Ma P W 2022 Sci. Rep. 12 22451
[68] Eckhoff M and Behler J 2021 npj Comput. Mater. 7 170
[69] Novikov I, Grabowski B, Körmann F, and Shapeev A 2022 npj Comput. Mater. 8 13
[70] Kotykhov A S, Gubaev K, Hodapp M et al. 2023 Sci. Rep. 13 19728
[71] Gonze X, Seddon B, Elliott J A, Tantardini C, and Shapeev A V 2022 J. Chem. Theory Comput. 18 6099
[72] Rinaldi M, Mrovec M, Bochkarev A, Lysogorskiy Y, and Drautz R 2024 npj Comput. Mater. 10 12
[73] Yu H Y, Zhong Y, Hong L L, Xu C S, Ren W, Gong X G, and Xiang H J 2024 Phys. Rev. B 109 144426
[74] Yu H Y, Zhong Y, Ji J Y, Gong X G, and Xiang H J 2022 arXiv:2211.11403 [cond-mat.mtrl-sci]
[75] Yuan Z L, Xu Z M, Li H, Cheng X L, Tao H G, Tang Z C, Zhou Z Y, Duan W H, and Xu Y 2024 Quantum Front. 3 8
[76] Cai Z F, Wang K, Xu Y, Wei S H, and Xu B 2023 Quantum Front. 2 21
[77] Li H, Tang Z C, Gong X X, Zou N L, Duan W H, and Xu Y 2023 Nat. Comput. Sci. 3 321
[78] Frederiksen S L, Jacobsen K W, Brown K S, and Sethna J P 2004 Phys. Rev. Lett. 93 165501
[79] Behler J 2014 J. Phys.: Condens. Matter 26 183001
[80] Podryabinkin E V and Shapeev A V 2017 Comput. Mater. Sci. 140 171
[81] Jinnouchi R, Lahnsteiner J, Karsai F, Kresse G, and Bokdam M 2019 Phys. Rev. Lett. 122 225701
[82] Lysogorskiy Y, Bochkarev A, Mrovec M, and Drautz R 2023 Phys. Rev. Mater. 7 043801
[83] Eisenbach M, Perera D, Landau D P, Nicholson D M, Yin J Q, and Brown G 2015 J. Phys.: Conf. Ser. 640 012019
Related articles from Frontiers Journals
[1] Ran Liu, Shuang Liu, Ying Zhang, Peng Wang, and Zhen Yao. Systematical High-Pressure Study of Praseodymium Nitrides in N-Rich Region[J]. Chin. Phys. Lett., 2024, 41(6): 066101
[2] Shi-Wei Ye, Song-Yuan Geng, Han-Pu Liang, Xie Zhang, and Su-Huai Wei. Origin of the Disparity between the Stability of Transmutated Mix-Cation and Mix-Anion Compounds[J]. Chin. Phys. Lett., 2024, 41(5): 066101
[3] Ao Zhang, Ke Deng, Jieming Sheng, Pengfei Liu, Shiv Kumar, Kenya Shimada, Zhicheng Jiang, Zhengtai Liu, Dawei Shen, Jiayu Li, Jun Ren, Le Wang, Liang Zhou, Yoshihisa Ishikawa, Takashi Ohhara, Qiang Zhang, Garry McIntyre, Dehong Yu, Enke Liu, Liusuo Wu, Chaoyu Chen, and Qihang Liu. Chiral Dirac Fermion in a Collinear Antiferromagnet[J]. Chin. Phys. Lett., 2023, 40(12): 066101
[4] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 066101
[5] Guo Chen, Caoping Niu, Wenming Xia, Jie Zhang, Zhi Zeng, and Xianlong Wang. Route to Stabilize Cubic Gauche Polynitrogen to Ambient Conditions via Surface Saturation by Hydrogen[J]. Chin. Phys. Lett., 2023, 40(8): 066101
[6] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 066101
[7] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 066101
[8] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 066101
[9] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 066101
[10] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 066101
[11] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 066101
[12] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 066101
[13] Mei-Zhe Lv, Bin Xu, Li-Chao Cai, Feng Jia, Xing-Dong Yuan. Analysis of Transition Mechanism of Cubic Boron Nitride Single Crystals under High Pressure-High Temperature with Valence Electron Structure Calculation[J]. Chin. Phys. Lett., 2019, 36(1): 066101
[14] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 066101
[15] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 066101
Viewed
Full text


Abstract