Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 064202    DOI: 10.1088/0256-307X/41/6/064202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Time Transfer in a 1839-km Telecommunication Fiber Link Demonstrating a Picosecond-Scale Stability
Xinxing Guo1,2†, Bing'an Hou3†, Bo Liu1,2, Fan Yang3, Weicheng Kong1,2, Tao Liu1,2,4*, Ruifang Dong1,2,4*, and Shougang Zhang1,2,4*
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
3Sichuan Taifu Ground Beidou Technology Co., Ltd, Chengdu 610093, China
4Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Xinxing Guo, Bing'an Hou, Bo Liu et al  2024 Chin. Phys. Lett. 41 064202
Download: PDF(2037KB)   PDF(mobile)(2037KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An implementation of high-precision time transfer over a 1839-km field fiber loop back link between two provincial capitals of China, Xi'an and Taiyuan, is reported. Time transfer stabilities of 6.5 ps at averaging time of 1 s and 4.6 ps at 40000 s were achieved. The uncertainty for the time transfer system was evaluated, showing a budget of 56.2 ps. These results stand for a significant milestone in achieving high-precision time transfer over a field fiber link spanning thousands of kilometers, signifying a record-breaking achievement for the real-field time transfer in both stability and distance, which paves the way for constructing the nationwide high-precision time service via fiber network.
Received: 14 February 2024      Published: 20 June 2024
PACS:  07.60.Vg (Fiber-optic instruments)  
  06.30.-k (Measurements common to several branches of physics and astronomy)  
  42.81.Uv (Fiber networks)  
  06.30.Ft (Time and frequency)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/064202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/064202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinxing Guo
Bing'an Hou
Bo Liu
Fan Yang
Weicheng Kong
Tao Liu
Ruifang Dong
and Shougang Zhang
[1] Swallows M D, Bishof M, Lin Y G, Blatt S, Martin M J, Rey A M, and Ye J 2011 Science 331 1043
[2] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, and Oates C W 2012 Phys. Rev. Lett. 108 153002
[3] Yin M J, Lu X T, Li T, Xia J J, Wang T, Zhang X F, and Chang H 2022 Phys. Rev. Lett. 128 073603
[4] Lopez O, Kanj A, Pottie P E, Rovera D, Achkar J, Chardonnet C, Amy-Klein A, and Santarelli G 2013 Appl. Phys. B 110 3
[5] Cheng H H, Wu G L, Zuo F X, Hu L, and Chen J P 2019 Opt. Lett. 44 5206
[6] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Ł, and Lipiński M 2013 Metrologia 50 133
[7] Rost M, Piester D, Yang W, Feldmann T, Wübbena T, and Bauch A 2012 Metrologia 49 772
[8] Krehlik P, Sliwczynski Ł, Buczek Ł, and Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844
[9] Zhang H, Wu G L, Li H W, Li X W, and Chen J P 2016 IEEE Photonics J. 8 7804408
[10] Zhang C L, Li Y, Chen X et al. 2021 IEEE Photonics J. 13 3100106
[11] Zang Q, Quan H L, Zhao K et al. 2021 Photonics 8 325
[12] Wang L, Liu Y, Jiao W H, Hu L, Chen J P, and Wu G L 2022 Opt. Express 30 25522
[13] Guo X X, Qiu Y F, Liu B et al. 2022 Appl. Sci. 12 6643
[14] Kodet J, Pánek P, and Procházka I 2016 Metrologia 53 18
[15] Guo X X, Liu B, Kong W C et al. 2023 Front. Phys. 10 1080966
[16] Zhang H, Wu G L, Hu L et al. 2015 IEEE Photonics J. 7 1
[17] Liu B, Guo X X, Kong W C et al. 2022 Photonics 9 522
[18] Lopez O, Haboucha A, Chanteau B et al. 2012 Opt. Express 20 23518
[19] Liu Q, Chen W, Xu D et al. 2015 Chin. Opt. Lett. 13 110601
[20] Zuo F X, Li Q, Xie K F, Hu L, Chen J P, and Wu G L 2022 Opt. Lett. 47 1005
[21] Chen F X, Zhao K, Li B et al. 2021 Acta Phys. Sin. 70 070702 (in Chinese)
[22] Zuo F X, Chen Z F, Hu L et al. 2020 IEEE Access 8 114656
[23] Śliwczyński Ł, Krehlik P, and Lipiński M 2010 Meas. Sci. Technol. 21 075302
[24] André P S and Pinto A N 2005 Opt. Commun. 246 303
[25] Zhang H, Wu G L, Li X W, and Chen J P 2017 Metrologia 54 94
[26] Hong H B, Quan R N, Xiang X et al. 2024 J. Lightwave Technol. 42 1479
Related articles from Frontiers Journals
[1] Peng-Fei Zhang, Li-Jun Song, Chang-Lin Zou, Xin Wang, Chen-Xi Wang, Gang Li, and Tian-Cai Zhang. Tunable Optical Bandpass Filter via a Microtip-Touched Tapered Optical Fiber[J]. Chin. Phys. Lett., 2020, 37(10): 064202
[2] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 064202
[3] ZHOU Guo-Rui, LV Hai-Bing, YUAN Xiao-Dong, ZHOU Hai, LIU Hao, LI Ke-Xin, CHENG Xiao-Feng, MIAO Xin-Xiang. Liquid Concentration Sensing Properties of Microfibers with a Nanoscale-Structured Film[J]. Chin. Phys. Lett., 2015, 32(03): 064202
[4] YAN Hai-Feng**, YU Zhong-Yuan, LIU Yu-Min, TIAN Hong-Da, HAN Li-Hong . Novel Propagation Properties of Total Internal Reflection Photonic Crystal Fibres with Rhombic Air Holes[J]. Chin. Phys. Lett., 2011, 28(11): 064202
[5] PAN Er-Ming, RUAN Shuang-Chen, GUO Chun-Yu, WANG Yun-Cai, WEI Hui-Feng. Supercontinuum Generation with Output Power of 1.7W Pumped by a Picosecond Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(10): 064202
[6] ZHOU Lei, NING Ji-Ping, CHEN Cheng, HAN Qun, ZHANG Wei-Yi, WANG Jun-Tao. High Power Er/Yb Codoped Double Clad Fiber Pulsed Amplifier Based on an All-Fiber Configuration[J]. Chin. Phys. Lett., 2009, 26(6): 064202
[7] XIAO Wen, LIU De-Wen, LIU Yang, YI Xiao-Su, CONG Lin. Effects of Polarization-Maintaining Fibre Degrading on Precision of Fibre Optic Gyroscopes in Radiation Environment[J]. Chin. Phys. Lett., 2008, 25(4): 064202
[8] GAO Wei-Qing, ZHENG Huan, XU Li-Xin, WANG An-Ting, MING Hai, ANQi, HE Hu-Cheng, WANG Yun-Cai. Multiple-Pulse Operation in Passively Mode-Locked Fibre Laser with Positive Dispersion Cavity[J]. Chin. Phys. Lett., 2007, 24(5): 064202
[9] SUI Zhan, LIN Hong-Huan, WANG Jian-Jun, ZHAO Hong-Ming, LI Ming-Zhong, QIAN Lie-Jia, ZHU He-Yuan, FAN Dian-Yuan. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres[J]. Chin. Phys. Lett., 2006, 23(8): 064202
[10] JIN Xiao-Feng, ZHANG Xian-Min. Determination of Zero-Dispersion Wavelength by Four-Wave Mixing[J]. Chin. Phys. Lett., 2006, 23(6): 064202
[11] PAN Shi-Long, LOU Cai-Yun. Theoretical Design of Fibre-Based Digital Autocorrelator for Completely Characterizing Ultrashort Pulses[J]. Chin. Phys. Lett., 2006, 23(2): 064202
[12] LI Zeng-Chang, LIANG Hao, ZHENG Zhi-Qiang, ZHANG Qi-Jin, MING Hai. Amplified Spontaneous Emission of Rhodamine B-Doped Step-Index Polymer Optical Fibre[J]. Chin. Phys. Lett., 2005, 22(3): 064202
[13] YU Yong-Qin, RUAN Shuang-Chen, CHENG Chao, DU Chen-Lin, LIU Cheng-Xiang, LIN Hao-Jia. Spectral Broadening in a Polarization-Maintaining Photonic Crystal Fibre by Femtosecond Pulses from an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2005, 22(2): 064202
[14] YU Yong-Qin, RUAN Shuang-Chen, DU Chen-Lin, YAO Jian-Quan. Supercontinuum Generation Using a Polarization-Maintaining Photonic Crystal Fibre by a Regeneratively Amplified Ti:Sapphire Laser[J]. Chin. Phys. Lett., 2005, 22(2): 064202
Viewed
Full text


Abstract