Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 064201    DOI: 10.1088/0256-307X/41/6/064201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dissipation-Driven Superradiant Phase Transition of a Two-Dimensional Bose–Einstein Condensate in a Double Cavity
Bo-Hao Wu1,2, Xin-Xin Yang1,2, Yu Chen3*, and Wei Zhang1,2,4*
1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
2Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Bo-Hao Wu, Xin-Xin Yang, Yu Chen et al  2024 Chin. Phys. Lett. 41 064201
Download: PDF(463KB)   PDF(mobile)(470KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle. By adjusting the loss rate of cavities, we map out the phase diagram of steady states within a mean field framework. It is found that when the loss rates of the two cavities are different, superradiant transitions may not occur at the same time in the two cavities. A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance. In the case that both cavities are superradiant, a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate. The photon current shows a non-monotonic dependence on the loss rate difference, owing to the competition of photon number difference and cavity field phase difference. Our findings can be realized and detected in experiments.
Received: 20 February 2024      Published: 03 June 2024
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  67.85.-d (Ultracold gases, trapped gases)  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/064201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/064201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo-Hao Wu
Xin-Xin Yang
Yu Chen
and Wei Zhang
[1] Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, and Esslinger T 2007 Nature 450 268
[2] Ritsch H, Domokos P, Brennecke F, and Esslinger T 2013 Rev. Mod. Phys. 85 553
[3] Mivehvar F, Piazza F, Donner T, and Ritsch H 2021 Adv. Phys. 70 1
[4] Keeling J, Bhaseen M J, and Simons B D 2014 Phys. Rev. Lett. 112 143002
[5] Piazza F and Strack P 2014 Phys. Rev. Lett. 112 143003
[6] Chen Y, Yu Z, and Zhai H 2014 Phys. Rev. Lett. 112 143004
[7] Baumann K, Guerlin C, Brennecke F, and Esslinger T 2010 Nature 464 1301
[8] Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S, and Wu H 2021 Science 373 1359
[9] Gopalakrishnan S, Shchadilova Y E, and Demler E 2017 Phys. Rev. A 96 063828
[10] Lang J, Piazza F, and Zwerger W 2017 New J. Phys. 19 123027
[11] Léonard J, Morales A, Zupancic P, Esslinger T, and Donner T 2017 Nature 543 87
[12] Morales A, Zupancic P, Léonard J, Esslinger T, and Donner T 2018 Nat. Mater. 17 686
[13] Wu Z, Chen Y, and Zhai H 2018 Sci. Bull. 63 542
[14] Léonard J, Morales A, Zupancic P, Donner T, and Esslinger T 2017 Science 358 1415
[15] Dogra N, Landini M, Kroeger K, Hruby L, Donner T, and Esslinger T 2019 Science 366 1496
[16] Buča B and Jaksch D 2019 Phys. Rev. Lett. 123 260401
[17] Chiacchio E I R and Nunnenkamp A 2019 Phys. Rev. Lett. 122 193605
[18] Soriente M, Donner T, Chitra R, and Zilberberg O 2018 Phys. Rev. Lett. 120 183603
[19] Ferri F, Rosa-Medina R, Finger F, Dogra N, Soriente M, Zilberberg O, Donner T, and Esslinger T 2021 Phys. Rev. X 11 041046
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 064201
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 064201
[3] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 064201
[4] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 064201
[5] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 064201
[6] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 064201
[7] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 064201
[8] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 064201
[9] Kun Zhou, Jin-Ming Cui, Yun-Feng Huang, Zhao Wang, Zhong-Hua Qian, Qi-Ming Wu, Jian Wang, Ran He, Wei-Min Lv, Chang-Kang Hu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo. An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions[J]. Chin. Phys. Lett., 2017, 34(1): 064201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 064201
[11] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 064201
[12] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 064201
[13] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 064201
[14] GUO Yan-Qing, DENG Yao, PEI Pei, TONG Dian-Min, WANG Dian-Fu, MI Dong. Quantum State Transfer among Three Ring-Connected Atoms[J]. Chin. Phys. Lett., 2015, 32(06): 064201
[15] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 064201
Viewed
Full text


Abstract