Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 058201    DOI: 10.1088/0256-307X/41/5/058201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prediction of Ground State Configurations and Electrochemical Properties of Li$_{3}$InCl$_{6}$ Doped with F, Br, and Ga
Zheng-Yu Lu1, Le-Tian Chen1, Xu Hu1, Su-Ya Chen1, Xu Zhang2*, and Zhen Zhou1,2
1Department of Materials Science and Engineering, Nankai University, Tianjin 300350, China
2Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Cite this article:   
Zheng-Yu Lu, Le-Tian Chen, Xu Hu et al  2024 Chin. Phys. Lett. 41 058201
Download: PDF(8631KB)   PDF(mobile)(8654KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Compared with conventional solid-state electrolytes, halide solid-state electrolytes have several advantages such as a wider electrochemical window, better compatibility with oxide cathode materials, improved air stability, and easier preparation conditions making them conductive to industrial production. We concentrate on a typical halide solid-state electrolyte, Li$_{3}$InCl$_{6}$, predict the most stable structure after doping with Br, F, and Ga by using the Alloy Theoretic Automated Toolkit based on first-principles calculations, and verify the accuracy of the prediction model. To investigate the potential of three equivalently doped ground state configurations of Li$_{3}$InCl$_{6}$ as solid-state electrolytes for all-solid-state lithium-ion batteries, their specific properties such as crystal structure, band gap, convex packing energy, electrochemical stability window, and lithium-ion conductivity are computationally analyzed using first-principles calculations. After a comprehensive evaluation, it is determined that the F-doped ground state configuration Li$_{3}$InCl$_{2.5}$F$_{3.5}$ exhibits better thermal stability, wider electrochemical stability window, and better lithium ion conductivity (1.80 mS$\cdot$cm$^{-1}$ at room temperature). Therefore, Li$_{3}$InCl$_{2.5}$F$_{3.5}$ has the potential to be used in the field of all-solid-state lithium-ion batteries as a new type of halide electrolyte.
Received: 24 January 2024      Published: 23 May 2024
PACS:  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/058201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/058201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng-Yu Lu
Le-Tian Chen
Xu Hu
Su-Ya Chen
Xu Zhang
and Zhen Zhou
[1] Bruce P G, Freunberger S A, Hardwick L J, and Tarascon J M 2012 Nat. Mater. 11 172
[2] Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, and Shao-Horn Y 2016 Chem. Rev. 116 140
[3] Famprikis T, Canepa P, Dawson J A, Islam M S, and Masquelier C 2019 Nat. Mater. 18 1278
[4] Croce F, Appetecchi G B, Persi L, and Scrosati B 1998 Nature 394 456
[5] Murugan R, Thangadurai V, and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778
[6] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, and Mitsui A 2011 Nat. Mater. 10 682
[7] Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, and Hasegawa S 2018 Adv. Mater. 30 1803075
[8] Xu R C, Xia X H, Wang X L, Xia Y, and Tu J P 2017 J. Mater. Chem. A 5 2829
[9] Zhou L, Tufail M K, Yang L, Ahmad N, Chen R J, and Yang W 2020 Chem. Eng. J. 391 123529
[10] Mwizerwa J P, Zhang Q, Han F, Wan H, Cai L, Wang C, and Yao X 2020 ACS Appl. Mater. & Interfaces 12 18519
[11] Chen T, Zhang L, Zhang Z X, Li P, Wang H Q, Yu C, Yan X L, Wang L M, and Xu B 2019 ACS Appl. Mater. & Interfaces 11 40808
[12] Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, and Tu J P 2017 J. Mater. Chem. A 5 6310
[13] Trevey J E, Gilsdorf J R, Miller S W, and Lee S H 2012 Solid State Ionics 214 25
[14] Zhu Z Y, Chu I H, and Ong S P 2017 Chem. Mater. 29 2474
[15] Ujiie S, Inagaki T, Hayashi A, and Tatsumisago M 2014 Solid State Ionics 263 57
[16] Zhang N, Ding F, Yu S, Zhu K, Li H, Zhang W, Liu X, and Xu Q 2019 ACS Appl. Mater. & Interfaces 11 27897
[17] Choi S J, Choi S H, Bui A D, Lee Y J, Lee S M, Shin H C, and Ha Y C 2018 ACS Appl. Mater. & Interfaces 10 31404
[18] Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, and Liang C 2015 J. Am. Chem. Soc. 137 1384
[19] Hart G L W and Forcade R W 2008 Phys. Rev. B 77 224115
[20] van de Walle A, Asta M, and Ceder G 2002 Calphad 26 539
[21] Walle A and Ceder G 2002 J. Phase Equilib. 23 348
[22] Sang J W, Yu Y R, Wang Z, and Shao G S 2020 Phys. Chem. Chem. Phys. 22 12918
[23] Huang Y Y, Yu Y R, Xu H J, Zhang X D, Wang Z, and Shao G S 2021 J. Mater. Chem. A 9 14969
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Fontaine D D 1994 Solid State Phys. 47 33
[26] Ducastelle F 1993 Order and Phase Stability in Alloys. In: Terakura K and Akai H (eds) Interatomic Potential and Structural Stability. Springer Series in Solid-State Sciences (Berlin: Springer) vol 114 p 133
[27] Sanchez J M, Ducastelle F, and Gratias D 1984 Physica A 128 334
[28] Zunger A 1994 First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds. In: Turchi P E A and Gonis A (eds) Statics and Dynamics of Alloy Phase Transformations. NATO ASI Series (Boston: Springer) vol 319 p 361
[29] Connolly J W D and Williams A R 1983 Phys. Rev. B 27 5169
[30] Li X N, Liang J W, Luo J, Norouzi Banis M, Wang C H, Li W H, Deng S X, Yu C, Zhao F P, Hu Y F, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Adair K R, and Sun X L 2019 Energy & Environ. Sci. 12 2665
[31] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033
[36] Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, and Persson K A 2015 Comput. Mater. Sci. 97 209
[37] Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798
[38] Richards W D, Miara L J, Wang Y, Kim J C, and Ceder G 2016 Chem. Mater. 28 266
[39] Zhu Y Z, He X F, and Mo Y F 2015 ACS Appl. Mater. & Interfaces 7 23685
[40] Wang Q T, Ma X F, Liu Q, Sun D F, and Zhou X Z 2023 J. Alloys Compd. 969 172479
Related articles from Frontiers Journals
[1] Qiubo Guo, Shuai Han, Yaxiang Lu, Liquan Chen, and Yong-Sheng Hu. Low-Temperature Aqueous Na-Ion Batteries: Strategies and Challenges of Electrolyte Design[J]. Chin. Phys. Lett., 2023, 40(2): 058201
[2] Fei Xie , Yaxiang Lu, Liquan Chen , and Yong-Sheng Hu. Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries[J]. Chin. Phys. Lett., 2021, 38(11): 058201
Viewed
Full text


Abstract