CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Prediction of Ground State Configurations and Electrochemical Properties of Li$_{3}$InCl$_{6}$ Doped with F, Br, and Ga |
Zheng-Yu Lu1, Le-Tian Chen1, Xu Hu1, Su-Ya Chen1, Xu Zhang2*, and Zhen Zhou1,2 |
1Department of Materials Science and Engineering, Nankai University, Tianjin 300350, China 2Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
|
|
Cite this article: |
Zheng-Yu Lu, Le-Tian Chen, Xu Hu et al 2024 Chin. Phys. Lett. 41 058201 |
|
|
Abstract Compared with conventional solid-state electrolytes, halide solid-state electrolytes have several advantages such as a wider electrochemical window, better compatibility with oxide cathode materials, improved air stability, and easier preparation conditions making them conductive to industrial production. We concentrate on a typical halide solid-state electrolyte, Li$_{3}$InCl$_{6}$, predict the most stable structure after doping with Br, F, and Ga by using the Alloy Theoretic Automated Toolkit based on first-principles calculations, and verify the accuracy of the prediction model. To investigate the potential of three equivalently doped ground state configurations of Li$_{3}$InCl$_{6}$ as solid-state electrolytes for all-solid-state lithium-ion batteries, their specific properties such as crystal structure, band gap, convex packing energy, electrochemical stability window, and lithium-ion conductivity are computationally analyzed using first-principles calculations. After a comprehensive evaluation, it is determined that the F-doped ground state configuration Li$_{3}$InCl$_{2.5}$F$_{3.5}$ exhibits better thermal stability, wider electrochemical stability window, and better lithium ion conductivity (1.80 mS$\cdot$cm$^{-1}$ at room temperature). Therefore, Li$_{3}$InCl$_{2.5}$F$_{3.5}$ has the potential to be used in the field of all-solid-state lithium-ion batteries as a new type of halide electrolyte.
|
|
Received: 24 January 2024
Published: 23 May 2024
|
|
PACS: |
82.47.Uv
|
(Electrochemical capacitors; supercapacitors)
|
|
71.15.Ap
|
(Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))
|
|
|
|
|
[1] | Bruce P G, Freunberger S A, Hardwick L J, and Tarascon J M 2012 Nat. Mater. 11 172 |
[2] | Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, and Shao-Horn Y 2016 Chem. Rev. 116 140 |
[3] | Famprikis T, Canepa P, Dawson J A, Islam M S, and Masquelier C 2019 Nat. Mater. 18 1278 |
[4] | Croce F, Appetecchi G B, Persi L, and Scrosati B 1998 Nature 394 456 |
[5] | Murugan R, Thangadurai V, and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778 |
[6] | Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, and Mitsui A 2011 Nat. Mater. 10 682 |
[7] | Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, and Hasegawa S 2018 Adv. Mater. 30 1803075 |
[8] | Xu R C, Xia X H, Wang X L, Xia Y, and Tu J P 2017 J. Mater. Chem. A 5 2829 |
[9] | Zhou L, Tufail M K, Yang L, Ahmad N, Chen R J, and Yang W 2020 Chem. Eng. J. 391 123529 |
[10] | Mwizerwa J P, Zhang Q, Han F, Wan H, Cai L, Wang C, and Yao X 2020 ACS Appl. Mater. & Interfaces 12 18519 |
[11] | Chen T, Zhang L, Zhang Z X, Li P, Wang H Q, Yu C, Yan X L, Wang L M, and Xu B 2019 ACS Appl. Mater. & Interfaces 11 40808 |
[12] | Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, and Tu J P 2017 J. Mater. Chem. A 5 6310 |
[13] | Trevey J E, Gilsdorf J R, Miller S W, and Lee S H 2012 Solid State Ionics 214 25 |
[14] | Zhu Z Y, Chu I H, and Ong S P 2017 Chem. Mater. 29 2474 |
[15] | Ujiie S, Inagaki T, Hayashi A, and Tatsumisago M 2014 Solid State Ionics 263 57 |
[16] | Zhang N, Ding F, Yu S, Zhu K, Li H, Zhang W, Liu X, and Xu Q 2019 ACS Appl. Mater. & Interfaces 11 27897 |
[17] | Choi S J, Choi S H, Bui A D, Lee Y J, Lee S M, Shin H C, and Ha Y C 2018 ACS Appl. Mater. & Interfaces 10 31404 |
[18] | Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, and Liang C 2015 J. Am. Chem. Soc. 137 1384 |
[19] | Hart G L W and Forcade R W 2008 Phys. Rev. B 77 224115 |
[20] | van de Walle A, Asta M, and Ceder G 2002 Calphad 26 539 |
[21] | Walle A and Ceder G 2002 J. Phase Equilib. 23 348 |
[22] | Sang J W, Yu Y R, Wang Z, and Shao G S 2020 Phys. Chem. Chem. Phys. 22 12918 |
[23] | Huang Y Y, Yu Y R, Xu H J, Zhang X D, Wang Z, and Shao G S 2021 J. Mater. Chem. A 9 14969 |
[24] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[25] | Fontaine D D 1994 Solid State Phys. 47 33 |
[26] | Ducastelle F 1993 Order and Phase Stability in Alloys. In: Terakura K and Akai H (eds) Interatomic Potential and Structural Stability. Springer Series in Solid-State Sciences (Berlin: Springer) vol 114 p 133 |
[27] | Sanchez J M, Ducastelle F, and Gratias D 1984 Physica A 128 334 |
[28] | Zunger A 1994 First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds. In: Turchi P E A and Gonis A (eds) Statics and Dynamics of Alloy Phase Transformations. NATO ASI Series (Boston: Springer) vol 319 p 361 |
[29] | Connolly J W D and Williams A R 1983 Phys. Rev. B 27 5169 |
[30] | Li X N, Liang J W, Luo J, Norouzi Banis M, Wang C H, Li W H, Deng S X, Yu C, Zhao F P, Hu Y F, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Adair K R, and Sun X L 2019 Energy & Environ. Sci. 12 2665 |
[31] | Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314 |
[32] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[33] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[34] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[35] | Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033 |
[36] | Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, and Persson K A 2015 Comput. Mater. Sci. 97 209 |
[37] | Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798 |
[38] | Richards W D, Miara L J, Wang Y, Kim J C, and Ceder G 2016 Chem. Mater. 28 266 |
[39] | Zhu Y Z, He X F, and Mo Y F 2015 ACS Appl. Mater. & Interfaces 7 23685 |
[40] | Wang Q T, Ma X F, Liu Q, Sun D F, and Zhou X Z 2023 J. Alloys Compd. 969 172479 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|