Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 059501    DOI: 10.1088/0256-307X/41/5/059501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Cosmology-Independent Photon Mass Limits from Localized Fast Radio Bursts by Using Artificial Neural Networks
Jing-Yu Ran1,2†, Bao Wang1,2†, and Jun-Jie Wei1,2*
1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Jing-Yu Ran, Bao Wang, and Jun-Jie Wei 2024 Chin. Phys. Lett. 41 059501
Download: PDF(621KB)   PDF(mobile)(667KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A hypothetical photon mass $m_{\gamma}$ can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed distance. The dispersion measure and redshift measurements of fast radio bursts (FRBs) have been widely used to constrain the rest mass of the photon. However, all current studies analyzed the effect of the frequency-dependent dispersion for massive photons in the standard $\Lambda$CDM cosmological context. In order to alleviate the circularity problem induced by the presumption of a specific cosmological model based on the fundamental postulate of the masslessness of photons, here we employ a new model-independent smoothing technique, artificial neural network (ANN), to reconstruct the Hubble parameter $H(z)$ function from 34 cosmic-chronometer measurements. By combining observations of 32 well-localized FRBs and the $H(z)$ function reconstructed by ANN, we obtain an upper limit of $m_{\gamma} \le 3.5 \times 10^{-51}$ kg, or equivalently $m_{\gamma}\le2.0 \times 10^{-15}$ eV/c$^2$ ($m_{\gamma} \le 6.5 \times 10^{-51}$ kg, or equivalently $m_{\gamma} \le 3.6 \times 10^{-15}$ eV/c$^2$) at the $1\sigma$ ($2\sigma$) confidence level. This is the first cosmology-independent photon mass limit derived from extragalactic sources.
Received: 08 March 2024      Published: 15 May 2024
PACS:  14.70.Bh (Photons)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  95.85.Bh (Radio, microwave (>1 mm))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/059501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/059501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Yu Ran
Bao Wang
and Jun-Jie Wei
[1] de Broglie L 1922 J. Phys. Radium 3 422
[2] Proca A 1936 J. Phys. Radium 7 347
[3] Kouwn S, Oh P, and Park C G 2016 Phys. Rev. D 93 083012
[4] Spallicci A D A M, Helayël-Neto J A, López-Corredoira M, and Capozziello S 2021 Eur. Phys. J. C 81 4
[5] Williams E R, Faller J E, and Hill H A 1971 Phys. Rev. Lett. 26 721
[6] Lakes R 1998 Phys. Rev. Lett. 80 1826
[7] Luo J, Tu L C, Hu Z K, and Luan E J 2003 Phys. Rev. Lett. 90 081801
[8] Lowenthal D D 1973 Phys. Rev. D 8 2349
[9] Chibisov G V 1976 Sov. Phys. Usp. 19 624
[10] Ryutov D D 1997 Plasma Phys. Control. Fusion 39 A73
[11] Ryutov D D 2007 Plasma Phys. Control. Fusion 49 B429
[12] Liu L X and Shao C G 2012 Chin. Phys. Lett. 29 111401
[13] Retinò A, Spallicci A D A M, and Vaivads A 2016 Astropart. Phys. 82 49
[14] Jr Davis L, Goldhaber A S, and Nieto M M 1975 Phys. Rev. Lett. 35 1402
[15] Yang Y P and Zhang B 2017 Astrophys. J. 842 23
[16] Tu L C, Ye H L, and Luo J 2005 Chin. Phys. Lett. 22 3057
[17] Tu L C, Luo J, and Gillies G T 2005 Rep. Prog. Phys. 68 77
[18] Wu X F et al. 2016 Astrophys. J. Lett. 822 L15
[19] Bonetti L et al. 2016 Phys. Lett. B 757 548
[20] Bonetti L et al. 2017 Phys. Lett. B 768 326
[21] Shao L and Zhang B 2017 Phys. Rev. D 95 123010
[22] Xing N et al. 2019 Astrophys. J. Lett. 882 L13
[23] Wei J J and Wu X F 2020 Res. Astron. Astrophys. 20 206
[24] Wang H, Miao X, and Shao L 2021 Phys. Lett. B 820 136596
[25] Chang C M, Wei J J, Zhang S B, and Wu X F 2023 J. Cosmol. Astropart. Phys. 2023(01) 010
[26] Lin H N, Tang L, and Zou R 2023 Mon. Not. R. Astron. Soc. 520 1324
[27] Wang B, Wei J J, Wu X F, and López-Corredoira M 2023 J. Cosmol. Astropart. Phys. 2023(09) 025
[28] Wang Y B, Zhou X, Kurban A, and Wang F Y 2024 Astrophys. J. 965 38
[29]Lorimer D R and Kramer M 2012 Handbook of Pulsar Astronomy
[30] Zhang B 2023 Rev. Mod. Phys. 95 035005
[31] Wei J J and Wu X F 2021 Front. Phys. 16 44300
[32] Cordes J M and Lazio T J W 2002 arXiv:astro-ph/0207156
[33] Prochaska J X and Zheng Y 2019 Mon. Not. R. Astron. Soc. 485 648
[34] Keating L C and Pen U L 2020 Mon. Not. R. Astron. Soc. 496 L106
[35] Wu Q, Zhang G Q, and Wang F Y 2022 Mon. Not. R. Astron. Soc. 515 L1
[36] Deng W and Zhang B 2014 Astrophys. J. Lett. 783 L35
[37] Fukugita M, Hogan C J, and Peebles P J E 1998 Astrophys. J. 503 518
[38] Miralda-Escudé J, Haehnelt M, and Rees M J 2000 Astrophys. J. 530 1
[39] Macquart J P et al. 2020 Nature 581 391
[40] McQuinn M 2014 Astrophys. J. Lett. 780 L33
[41] Seikel M, Clarkson C, and Smith M 2012 J. Cosmol. Astropart. Phys. 2012(06) 036
[42] Wei J J and Wu X F 2017 Astrophys. J. 838 160
[43] Wang G J et al. 2017 Astrophys. J. 847 45
[44] Wang G J, Ma X J, Li S Y, and Xia J Q 2020 Astrophys. J. Suppl. Ser. 246 13
[45] Wasserman L et al. 2001 arXiv:astro-ph/0112050
[46] Ioffe S and Szegedy C 2015 arXiv:1502.03167 [cs.LG]
[47] Clevert D A, Unterthiner T, and Hochreiter S 2015 arXiv:1511.07289 [cs.LG]
[48] Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG]
[49] Jimenez R, Verde L, Treu T, and Stern D 2003 Astrophys. J. 593 622
[50] Simon J, Verde L, and Jimenez R 2005 Phys. Rev. D 71 123001
[51] Stern D et al. 2010 J. Cosmol. Astropart. Phys. 2010(02) 008
[52] Moresco M et al. 2012 J. Cosmol. Astropart. Phys. 2012(08) 006
[53] Zhang C et al. 2014 Res. Astron. Astrophys. 14 1221
[54] Moresco M 2015 Mon. Not. R. Astron. Soc. 450 L16
[55] Moresco M et al. 2016 J. Cosmol. Astropart. Phys. 2016(05) 014
[56] Ratsimbazafy A L et al. 2017 Mon. Not. R. Astron. Soc. 467 3239
[57] Borghi N, Moresco M, and Cimatti A 2022 Astrophys. J. Lett. 928 L4
[58] Jiao K, Borghi N, Moresco M, and Zhang T J 2023 Astrophys. J. Suppl. Ser. 265 48
[59] Tomasetti E et al. 2023 Astron. Astrophys. 679 A96
[60] Gaztañaga E, Cabré A, and Hui L 2009 Mon. Not. R. Astron. Soc. 399 1663
[61] Blake C et al. 2012 Mon. Not. R. Astron. Soc. 425 405
[62] Samushia L et al. 2013 Mon. Not. R. Astron. Soc. 429 1514
[63] Jimenez R and Loeb A 2002 Astrophys. J. 573 37
[64] Bentum M J, Bonetti L, and Spallicci A D A M 2017 Adv. Space Res. 59 736
[65] Planck Collaboration, Aghanim N et al. 2020 Astron. Astrophys. 641 A6
[66] Chatterjee S et al. 2017 Nature 541 58
[67] Bhandari S et al. 2022 Astron. J. 163 69
[68] Marcote B et al. 2020 Nature 577 190
[69] Bannister K W et al. 2019 Science 365 565
[70] Prochaska J X et al. 2019 Science 366 231
[71] Bhandari S et al. 2020 Astrophys. J. Lett. 895 L37
[72] Ravi V et al. 2019 Nature 572 352
[73] Chittidi J S et al. 2021 Astrophys. J. 922 173
[74] Heintz K E et al. 2020 Astrophys. J. 903 152
[75] Law C J et al. 2020 Astrophys. J. 899 161
[76] Ravi V et al. 2022 Mon. Not. R. Astron. Soc. 513 982
[77] James C W et al. 2022 Mon. Not. R. Astron. Soc. 516 4862
[78] Law C J et al. 2023 arXiv:2307.03344 [astro-ph.HE]
[79] Ryder S D et al. 2023 Science 382 294
[80] Foreman-Mackey D, Hogg D W, Lang D, and Goodman J 2013 Publ. Astron. Soc. Pac. 125 306
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 059501
[2] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 059501
[3] LIU Lin-Xia, SHAO Cheng-Gang. Re-estimatation of the Upper Limit on the Photon Mass with the Solar Wind Method[J]. Chin. Phys. Lett., 2012, 29(11): 059501
[4] DUAN Peng-Fei, ZHANG Ren-You, MA Wen-Gan, HAN Liang, GUO Lei, WANG Shao-Ming . Next-to-Leading Order QCD Corrections to t[J]. Chin. Phys. Lett., 2011, 28(11): 059501
[5] MA Jing, ZHANG Guang-Yu, TAN Li-Ying. Theoretical Study of Quantum Bit Rate in Free-Space Quantum Cryptography[J]. Chin. Phys. Lett., 2006, 23(6): 059501
[6] ZHU Kai, LIU Jue-Ping, YU Ran. Off-Shell Longitudinal Photon Light-Cone Wavefunction in the Low-Energy Effective Theory of QCD[J]. Chin. Phys. Lett., 2006, 23(5): 059501
[7] TU Liang-Cheng, YE Hong-Ling, LUO Jun. Variations of the Speed of Light with Frequency and Implied Photon Mass[J]. Chin. Phys. Lett., 2005, 22(12): 059501
[8] YU Ran, LIU Jue-Ping, ZHU Kai. Off-Shell Photon Light-Cone Transverse Wavefunction at Leading Twist[J]. Chin. Phys. Lett., 2005, 22(10): 059501
Viewed
Full text


Abstract