Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057801    DOI: 10.1088/0256-307X/41/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Photodoping-Modified Charge Density Wave Phase Transition in WS$_{{2}}$/1T-TaS$_{2}$ Heterostructure
Rui Wang1,2†, Jianwei Ding2,4†, Fei Sun5, Jimin Zhao3,4,6*, and Xiaohui Qiu2,4*
1Beijing Information Technology College, Beijing 100015, China
2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
6Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Rui Wang, Jianwei Ding, Fei Sun et al  2024 Chin. Phys. Lett. 41 057801
Download: PDF(4191KB)   PDF(mobile)(4296KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave (CDW) phase transition within a 1T-TaS$_{{2}}$ layer in a WS$_{{2}}$/1T-TaS$_{{2}}$ heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature ($T_{\rm c}$) and phase transition stiffness. We interpret the phenomenon that photo-induced hole doping, when surpassing a critical threshold value of $\sim$ $10^{18}$ cm$^{-3}$, sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials.
Received: 06 March 2024      Published: 23 May 2024
PACS:  71.45.Lr (Charge-density-wave systems)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.47.jg (Time resolved reflection spectroscopy)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057801       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Wang
Jianwei Ding
Fei Sun
Jimin Zhao
and Xiaohui Qiu
[1] Tsen A W, Hovden R, Wang D et al. 2015 Proc. Natl. Acad. Sci. USA 112 15054
[2] Yoshida M, Suzuki R, Zhang Y, Nakano M, and Iwasa Y 2015 Sci. Adv. 1 e1500606
[3] Liu G, Debnath B, Pope T R, Salguero T T, Lake R K, and Balandin A A 2016 Nat. Nanotechnol. 11 845
[4] Yu Y J, Yang F Y, Lu X F et al. 2015 Nat. Nanotechnol. 10 270
[5] Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A, and Datta S 2015 Nano Lett. 15 1861
[6] Wen W, Zhu Y, Dang C, Chen W, and Xie L 2019 Nano Lett. 19 1805
[7]Hasaien J Z L, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X H, and Zhao J M 2024 submitted
[8] Zhu C, Chen Y, Liu F C et al. 2018 ACS Nano 12 11203
[9] Li W and Naik G V 2020 Nano Lett. 20 7868
[10] Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B, and Sun Y P 2016 Phys. Rev. B 94 125126
[11] Mohammadzadeh A, Baraghani S, Yin S, Kargar F, Bird J P, and Balandin A A 2021 Appl. Phys. Lett. 118 093102
[12] Jarach Y, Rodes L, Ber E, Yalon E, and Kanigel A 2022 Appl. Phys. Lett. 120 083502
[13] Svetin D, Vaskivskyi I, Sutar P, Goreshnik E, Gospodaric J, Mertelj T, and Mihailovic D 2014 Appl. Phys. Express 7 103201
[14] Gan L Y, Zhang L H, Zhang Q Y, Guo C S, Schwingenschlögl U, and Zhao Y 2016 Phys. Chem. Chem. Phys. 18 3080
[15] Zhao R, Wang Y, Deng D, Luo X, Lu W J, Sun Y P, Liu Z K, Chen L Q, and Robinson J 2017 Nano Lett. 17 3471
[16] Bu K, Zhang W, Fei Y, Wu Z, Zheng Y, Gao J, Luo X, Sun Y P, and Yin Y 2019 Commun. Phys. 2 146
[17] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033
[18] Wang Z, Chu L, Li L, Yang M, Wang J, Eda G, and Loh K P 2019 Nano Lett. 19 2840
[19] Chen Y, Wu L S, Xu H et al. 2020 Adv. Mater. 32 2003746
[20] Fu W, Qiao J S, Zhao X X et al. 2020 ACS Nano 14 3917
[21] Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, and Li S C 2022 Nat. Mater. 21 284
[22] Szałowski K, Milivojević M, Kochan D, and Gmitra M 2023 2D Mater. 10 025013
[23] Lutsyk I, Szalowski K, Krukowski P et al. 2023 Nano Res. 16 11528
[24] Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, and Zhao J M 2020 Chin. Phys. Lett. 37 097802
[25] Hao W J, Gu M H, Tian Z Y, Fu S H, Meng M, Zhang H, Guo J D, and Zhao J M 2024 Adv. Sci. 11 2305900
[26] Wang K, Huang B, Tian M K et al. 2016 ACS Nano 10 6612
[27] Liu H L, Shen C C, Su S H, Hsu C L, Li M Y, and Li L J 2014 Appl. Phys. Lett. 105 201905
[28] Wang R, Zhou J B, Wang X S, Xie L M, Zhao J M, and Qiu X H 2021 Nano Res. 14 1162
[29] Demsar J, Biljaković K, and Mihailovic D 1999 Phys. Rev. Lett. 83 800
[30] Warawa K, Christophel N, Sobolev S, Demsar J, Roskos H G, and Thomson M D 2023 Phys. Rev. B 108 045147
[31] Toda Y, Tateishi K, and Tanda S 2004 Phys. Rev. B 70 033106
[32] Yusupov R V, Mertelj T, Chu J H, Fisher I R, and Mihailovic D 2008 Phys. Rev. Lett. 101 246402
[33] Demsar J, Forró L, Berger H, and Mihailovic D 2002 Phys. Rev. B 66 041101
[34] Dardel B, Grioni M, Malterre D, Weibel P, Baer Y, and Lévy F 1992 Phys. Rev. B 46 7407
[35] Kabanov V V, Demsar J, Podobnik B, and Mihailovic D 1999 Phys. Rev. B 59 1497
[36] Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Neto A H C, Matsuda K, and Eda G 2016 Nano Lett. 16 4087
[37] Inada R, Ōnuki Y, and Tanuma S 1979 Phys. Lett. 69 453
[38] Yoshida M, Zhang Y, Ye J, Suzuki R, Imai Y, Kimura S, Fujiwara A, and Iwasa Y 2014 Sci. Rep. 4 7302
[39] Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S, and Xie L 2020 Nano Lett. 20 6725
Related articles from Frontiers Journals
[1] Hai-Yang Ma, Jia-Xin Yin, M. Zahid Hasan, and Jianpeng Liu. Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe[J]. Chin. Phys. Lett., 2024, 41(4): 057801
[2] Lin Wu, Yating Hu, Dongze Fan, Di Wang, and Xiangang Wan. Electron-Correlation-Induced Charge Density Wave in FeGe[J]. Chin. Phys. Lett., 2023, 40(11): 057801
[3] Li Zhu, Wei-Min Zhao, Zhen-Yu Jia, Huiping Li, Xuedong Xie, Qi-Yuan Li, Qi-Wei Wang, Li-Guo Dou, Ju-Gang Hu, Yi Zhang, Wenguang Zhu, Shun-Li Yu, Jian-Xin Li, and Shao-Chun Li. Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(5): 057801
[4] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 057801
[5] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 057801
[6] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 057801
[7] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 057801
[8] Cong-Cong Fan, Ji-Shan Liu, Kai-Li Zhang, Wan-Ling Liu, Xiang-Le Lu, Zheng-Tai Liu, Dong Wu, Zhong-Hao Liu, Da-Wei Shen, Li-Xing You. Two Gaps in Semiconducting EuSbTe$_3$ Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 057801
[9] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 057801
[10] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 057801
[11] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 057801
[12] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 057801
[13] WANG Pei-Pei, LONG Yu-Jia, ZHAO Ling-Xiao, CHEN Dong, XUE Mian-Qi, CHEN Gen-Fu. Anisotropic Transport and Magnetic Properties of Charge-Density-Wave Materials RSeTe2 (R = La, Ce, Pr, Nd)[J]. Chin. Phys. Lett., 2015, 32(08): 057801
[14] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 057801
[15] WU Yue, DONG Xiao-Li, MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian. Two Superconducting Phases and Their Characteristics in Layered BaTi2(Sb1?xBix)2O with x=0.16[J]. Chin. Phys. Lett., 2014, 31(07): 057801
Viewed
Full text


Abstract