CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Self-Oscillated Growth Formation of Standing Ultrathin Nanosheets out of Uniform Ge/Si Superlattice Nanowires |
Xin Gan, Junyang An, Junzhuan Wang*, Zongguang Liu, Jun Xu, Yi Shi, Kunji Chen, and Linwei Yu* |
School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing 210093, China |
|
Cite this article: |
Xin Gan, Junyang An, Junzhuan Wang et al 2023 Chin. Phys. Lett. 40 066101 |
|
|
Abstract Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures. A self-oscillating growth phenomenon of catalyst droplets, consuming surface-coating a-Si/a-Ge bilayer, is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge (c-Si/c-Ge) nano-slates, with Ge-rich layer thickness of 14–19 nm, embedded within a superlattice nanowire structure, with pre-known position and uniform channel diameter. A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to $\sim$ $6$ nm thick, without the use of any expensive high-resolution lithography and growth modulation control. A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics. It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics, or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission.
|
|
Received: 09 April 2023
Published: 29 May 2023
|
|
PACS: |
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
68.65.Cd
|
(Superlattices)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.07.Gf
|
(Nanowires)
|
|
|
|
|
[1] | Ren D D, Ahtapodov L, Nilsen J S, Yang J F, Gustafsson A, Huh J, Conibeer G J, van Helvoort A T J, Fimland B O, and Weman H 2018 Nano Lett. 18 2304 |
[2] | De Luca M, Fasolato C, Verheijen M A, Ren Y, Swinkels M Y, Kolling S, Bakkers E, Rurali R, Cartoixa X, and Zardo I 2019 Nano Lett. 19 4702 |
[3] | Gou G Y, Dai G Z, Qian C, Liu Y F, Fu Y, Tian Z Y, He Y K, Kong L G, Yang J L, Sun J, and Gao Y L 2016 Nanoscale 8 14580 |
[4] | Li F Z, Meng Y, Dong R T, Yip S, Lan C Y, Kang X, Wang F Y, Chan K S, and Ho J C 2019 ACS Nano 13 12042 |
[5] | Jung C S, Kim H S, Im H S, Seo Y S, Park K, Back S H, Cho Y J, Kim C H, Park J, and Ahn J P 2013 Nano Lett. 13 543 |
[6] | Beckers A, Thewissen M, and Sorée B 2018 J. Appl. Phys. 124 144304 |
[7] | Peri L, Prete D, Demontis V, Zannier V, Rossi F, Sorba L, Beltram F, and Rossella F 2022 Nano Energy 103 107700 |
[8] | Li F Z, Yip S, Dong R T, Zhou Z Y, Lan C Y, Liang X G, Li D P, Meng Y, Kang X L, and Ho J C 2019 Nano Res. 12 1796 |
[9] | Xiong Z, Cai Y, Ren X, Cao B, Liu J, Huo Z, and Tang J 2017 ACS Appl. Mater. & Interfaces 9 32424 |
[10] | Yoo B, Xiao F, Bozhilov K N, Herman J, Ryan M A, and Myung N V 2007 Adv. Mater. 19 296 |
[11] | Gudiksen M S, Lauhon L J, Wang J, Smith D C, and Lieber C M 2002 Nature 415 617 |
[12] | Irrera A, Artoni P, Fioravanti V, Franzò G, Fazio B, Musumeci P, Boninelli S, Impellizzeri G, Terrasi A, Priolo F, and Iacona F 2014 Nanoscale Res. Lett. 9 74 |
[13] | Wu Y Y, Fan R, and Yang P D 2002 Nano Lett. 2 83 |
[14] | Flynn G, Ramasse Q M, and Ryan K M 2016 Nano Lett. 16 374 |
[15] | Yu L W, Alet P J, Picardi G, and Roca I C P 2009 Phys. Rev. Lett. 102 125501 |
[16] | Yu L W, Oudwan M, Moustapha O, Fortuna F, and Roca I C P 2009 Appl. Phys. Lett. 95 113106 |
[17] | Zhao Y L, Ma H G, Dong T G, Wang J Z, Yu L H, Xu J, Shi Y, Chen K J, and Roca I C P 2018 Nano Lett. 18 6931 |
[18] | Zhao Y L, Li L F, Liu S S, Wang J Z, Xu J, Shi Y, Chen K J, Roca I C P, and Yu L W 2020 Nanotechnology 31 145602 |
[19] | Thurmond C D 1953 J. Phys. Chem. 57 827 |
[20] | Kühnle J, Bergmann R B, and Werner J H 1997 J. Cryst. Growth 173 62 |
[21] | Fleurial J P and Borshchevsky A 1990 J. Electrochem. Soc. 137 2928 |
[22] | Dismukes J P, Ekstrom L, and Paff R J 1964 J. Phys. Chem. 68 3021 |
[23] | Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S, and Saraswat K C 2013 Nano Lett. 13 3783 |
[24] | Oehrlein G S, Bestwick T D, Jones P L, Jaso M A, and Lindström J L 1991 J. Electrochem. Soc. 138 1443 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|