FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Photonic Generation of Chirp-Rate-Tunable Microwave Waveforms Using Temporal Cavity Solitons with Agile Repetition Rate |
Wen-Hao Xiong, Chuan-Fei Yao, Ping-Xue Li*, Fei-Yu Zhu, and Ruo-Nan Lei |
Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
|
Cite this article: |
Wen-Hao Xiong, Chuan-Fei Yao, Ping-Xue Li et al 2023 Chin. Phys. Lett. 40 064201 |
|
|
Abstract Chirp-rate-tunable microwave waveforms (CTMWs) with dynamically tunable parameters are of basic interest to many practical applications. Recently, photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission. An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture, relying on dual temporal cavity solitons with agile repetition rate. In the experiment, the triangular optical chirp microwave waveforms with bandwidth above 0.45 GHz (ranging from 1.45 GHz to 1.9 GHz) are obtained, and the chirp rate reaches 0.9 GHz/ms. The reconfigurability is also demonstrated by adjusting the control signal. This all-optical approach provides a technical basis for compact, multi-band reconfigurable microwave photonics transmission and reception systems.
|
|
Received: 31 January 2023
Published: 01 June 2023
|
|
PACS: |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.79.Nv
|
(Optical frequency converters)
|
|
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
33.20.Bx
|
(Radio-frequency and microwave spectra)
|
|
|
|
|
[1] | de Chatellus H G, Cortes L R, Schnebelin C, Burla M, and Azana J 2018 Nat. Commun. 9 2438 |
[2] | Ghelfi P, Laghezza F, Scotti F, Onori D, and Bogoni A 2016 J. Lightwave Technol. 34 500 |
[3] | Behroozpour B, Sandborn P A M, Quack N, Seok T J, Matsui Y, Wu M C, and Boser B E 2017 IEEE J. Solid-State Circuits 52 161 |
[4] | Dong Y K, Zhu Z D, Tian X N, Qiu L Q, and Ba D X 2021 J. Lightwave Technol. 39 2275 |
[5] | Neill J L, Harris B J, Steber A L, Douglass K O, Plusquellic D F, and Pate B H 2013 Opt. Express 21 19743 |
[6] | Hao T F, Liu Y Z, Tang J, Cen Q Z, Li W, Zhu N L, Dai Y T, Capmany J, Yao J P, and Li M 2020 Adv. Photon. 2 044001 |
[7] | Maleki L 2011 Nat. Photon. 5 728 |
[8] | Torres-Company V and Weiner A M 2014 Laser & Photon. Rev. 8 368 |
[9] | Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hansch T W, and Picque N 2016 Nat. Photon. 10 27 |
[10] | Shi J W, Kuo F M, Chen N W, Set S Y, Huang C B, and Bowers J E 2012 IEEE Photon. J. 4 215 |
[11] | Kippenberg T J, Gaeta A L, Lipson M, and Gorodetsky M L 2018 Science 361 eaan8083 |
[12] | Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, and Kippenberg T J 2014 Nat. Photon. 8 145 |
[13] | Liu J Q, Lucas E, Raja A S, He J J, Riemensberger J, Wang R N, Karpov M, Guo H R, Bouchand R, and Kippenberg T J 2020 Nat. Photon. 14 486 |
[14] | Riemensberger J, Lukashchuk A, Karpov M, Weng W L, Lucas E, Liu J Q, and Kippenberg T J 2020 Nature 581 164 |
[15] | Obrzud E, Lecomte S, and Herr T 2017 Nat. Photon. 11 600 |
[16] | Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, and Wang Y J 2022 Chin. Phys. Lett. 39 123401 |
[17] | Leo F, Coen S, Kockaert P, Gorza S P, Emplit P, and Haelterman M 2010 Nat. Photon. 4 471 |
[18] | Huang Y L, Li Q, Han J Y, Jia Z X, Yu Y S, Yang Y D, Xiao J L, Wu J L, Zhang D M, Huang Y Z, Qin W P, and Qin G S 2019 Optica 6 1491 |
[19] | Melchert O, Demircan A, and Yulin A 2020 Sci. Rep. 10 8849 |
[20] | Li Q, Jia Z X, Li Z R, Yang Y D, Xiao J L, Chen S W, Qin G S, Huang Y Z, and Qin W P 2017 AIP Adv. 7 075215 |
[21] | Stéphan G M, Tam T T, Blin S, Besnard P, and Tetu M 2005 Phys. Rev. A 71 043809 |
[22] | Xiong W H, Yao C F, Li P X, Wang Y X, and Zhu F Y 2022 IEEE Photon. J. 14 1530004 |
[23] | Lihachev G, Riemensberger J, Weng W L, Liu J Q, Tian H, Siddharth A, Snigirev V, Shadymov V, Voloshin A, Wang R N, He J J, Bhave S A, and Kippenberg T J 2022 Nat. Commun. 13 3522 |
[24] | Wun J M, Wei C C, Chen J H, Goh C S, Set S Y, and Shi J W 2013 Opt. Express 21 11475 |
[25] | Zhou P, Zhang F Z, Guo Q S, and Pan S L 2016 Opt. Express 24 018460 |
[26] | Zhang H, Zhang F Z, Pan S L, Ye X W, Liu S F, and Chen H 2020 IEEE Photon. Technol. Lett. 32 1037 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|