Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 064201    DOI: 10.1088/0256-307X/40/6/064201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Photonic Generation of Chirp-Rate-Tunable Microwave Waveforms Using Temporal Cavity Solitons with Agile Repetition Rate
Wen-Hao Xiong, Chuan-Fei Yao, Ping-Xue Li*, Fei-Yu Zhu, and Ruo-Nan Lei
Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Cite this article:   
Wen-Hao Xiong, Chuan-Fei Yao, Ping-Xue Li et al  2023 Chin. Phys. Lett. 40 064201
Download: PDF(7069KB)   PDF(mobile)(7318KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chirp-rate-tunable microwave waveforms (CTMWs) with dynamically tunable parameters are of basic interest to many practical applications. Recently, photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission. An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture, relying on dual temporal cavity solitons with agile repetition rate. In the experiment, the triangular optical chirp microwave waveforms with bandwidth above 0.45 GHz (ranging from 1.45 GHz to 1.9 GHz) are obtained, and the chirp rate reaches 0.9 GHz/ms. The reconfigurability is also demonstrated by adjusting the control signal. This all-optical approach provides a technical basis for compact, multi-band reconfigurable microwave photonics transmission and reception systems.
Received: 31 January 2023      Published: 01 June 2023
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.79.Nv (Optical frequency converters)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  33.20.Bx (Radio-frequency and microwave spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/064201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/064201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hao Xiong
Chuan-Fei Yao
Ping-Xue Li
Fei-Yu Zhu
and Ruo-Nan Lei
[1] de Chatellus H G, Cortes L R, Schnebelin C, Burla M, and Azana J 2018 Nat. Commun. 9 2438
[2] Ghelfi P, Laghezza F, Scotti F, Onori D, and Bogoni A 2016 J. Lightwave Technol. 34 500
[3] Behroozpour B, Sandborn P A M, Quack N, Seok T J, Matsui Y, Wu M C, and Boser B E 2017 IEEE J. Solid-State Circuits 52 161
[4] Dong Y K, Zhu Z D, Tian X N, Qiu L Q, and Ba D X 2021 J. Lightwave Technol. 39 2275
[5] Neill J L, Harris B J, Steber A L, Douglass K O, Plusquellic D F, and Pate B H 2013 Opt. Express 21 19743
[6] Hao T F, Liu Y Z, Tang J, Cen Q Z, Li W, Zhu N L, Dai Y T, Capmany J, Yao J P, and Li M 2020 Adv. Photon. 2 044001
[7] Maleki L 2011 Nat. Photon. 5 728
[8] Torres-Company V and Weiner A M 2014 Laser & Photon. Rev. 8 368
[9] Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hansch T W, and Picque N 2016 Nat. Photon. 10 27
[10] Shi J W, Kuo F M, Chen N W, Set S Y, Huang C B, and Bowers J E 2012 IEEE Photon. J. 4 215
[11] Kippenberg T J, Gaeta A L, Lipson M, and Gorodetsky M L 2018 Science 361 eaan8083
[12] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, and Kippenberg T J 2014 Nat. Photon. 8 145
[13] Liu J Q, Lucas E, Raja A S, He J J, Riemensberger J, Wang R N, Karpov M, Guo H R, Bouchand R, and Kippenberg T J 2020 Nat. Photon. 14 486
[14] Riemensberger J, Lukashchuk A, Karpov M, Weng W L, Lucas E, Liu J Q, and Kippenberg T J 2020 Nature 581 164
[15] Obrzud E, Lecomte S, and Herr T 2017 Nat. Photon. 11 600
[16] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, and Wang Y J 2022 Chin. Phys. Lett. 39 123401
[17] Leo F, Coen S, Kockaert P, Gorza S P, Emplit P, and Haelterman M 2010 Nat. Photon. 4 471
[18] Huang Y L, Li Q, Han J Y, Jia Z X, Yu Y S, Yang Y D, Xiao J L, Wu J L, Zhang D M, Huang Y Z, Qin W P, and Qin G S 2019 Optica 6 1491
[19] Melchert O, Demircan A, and Yulin A 2020 Sci. Rep. 10 8849
[20] Li Q, Jia Z X, Li Z R, Yang Y D, Xiao J L, Chen S W, Qin G S, Huang Y Z, and Qin W P 2017 AIP Adv. 7 075215
[21] Stéphan G M, Tam T T, Blin S, Besnard P, and Tetu M 2005 Phys. Rev. A 71 043809
[22] Xiong W H, Yao C F, Li P X, Wang Y X, and Zhu F Y 2022 IEEE Photon. J. 14 1530004
[23] Lihachev G, Riemensberger J, Weng W L, Liu J Q, Tian H, Siddharth A, Snigirev V, Shadymov V, Voloshin A, Wang R N, He J J, Bhave S A, and Kippenberg T J 2022 Nat. Commun. 13 3522
[24] Wun J M, Wei C C, Chen J H, Goh C S, Set S Y, and Shi J W 2013 Opt. Express 21 11475
[25] Zhou P, Zhang F Z, Guo Q S, and Pan S L 2016 Opt. Express 24 018460
[26] Zhang H, Zhang F Z, Pan S L, Ye X W, Liu S F, and Chen H 2020 IEEE Photon. Technol. Lett. 32 1037
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 064201
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 064201
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 064201
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 064201
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 064201
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 064201
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064201
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 064201
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 064201
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 064201
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 064201
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 064201
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 064201
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 064201
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 064201
Viewed
Full text


Abstract