Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 066101    DOI: 10.1088/0256-307X/40/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Self-Oscillated Growth Formation of Standing Ultrathin Nanosheets out of Uniform Ge/Si Superlattice Nanowires
Xin Gan, Junyang An, Junzhuan Wang*, Zongguang Liu, Jun Xu, Yi Shi, Kunji Chen, and Linwei Yu*
School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Xin Gan, Junyang An, Junzhuan Wang et al  2023 Chin. Phys. Lett. 40 066101
Download: PDF(30579KB)   PDF(mobile)(30596KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures. A self-oscillating growth phenomenon of catalyst droplets, consuming surface-coating a-Si/a-Ge bilayer, is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge (c-Si/c-Ge) nano-slates, with Ge-rich layer thickness of 14–19 nm, embedded within a superlattice nanowire structure, with pre-known position and uniform channel diameter. A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to $\sim$ $6$ nm thick, without the use of any expensive high-resolution lithography and growth modulation control. A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics. It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics, or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission.
Received: 09 April 2023      Published: 29 May 2023
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  68.65.Cd (Superlattices)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  81.07.Gf (Nanowires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/066101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Gan
Junyang An
Junzhuan Wang
Zongguang Liu
Jun Xu
Yi Shi
Kunji Chen
and Linwei Yu
[1] Ren D D, Ahtapodov L, Nilsen J S, Yang J F, Gustafsson A, Huh J, Conibeer G J, van Helvoort A T J, Fimland B O, and Weman H 2018 Nano Lett. 18 2304
[2] De Luca M, Fasolato C, Verheijen M A, Ren Y, Swinkels M Y, Kolling S, Bakkers E, Rurali R, Cartoixa X, and Zardo I 2019 Nano Lett. 19 4702
[3] Gou G Y, Dai G Z, Qian C, Liu Y F, Fu Y, Tian Z Y, He Y K, Kong L G, Yang J L, Sun J, and Gao Y L 2016 Nanoscale 8 14580
[4] Li F Z, Meng Y, Dong R T, Yip S, Lan C Y, Kang X, Wang F Y, Chan K S, and Ho J C 2019 ACS Nano 13 12042
[5] Jung C S, Kim H S, Im H S, Seo Y S, Park K, Back S H, Cho Y J, Kim C H, Park J, and Ahn J P 2013 Nano Lett. 13 543
[6] Beckers A, Thewissen M, and Sorée B 2018 J. Appl. Phys. 124 144304
[7] Peri L, Prete D, Demontis V, Zannier V, Rossi F, Sorba L, Beltram F, and Rossella F 2022 Nano Energy 103 107700
[8] Li F Z, Yip S, Dong R T, Zhou Z Y, Lan C Y, Liang X G, Li D P, Meng Y, Kang X L, and Ho J C 2019 Nano Res. 12 1796
[9] Xiong Z, Cai Y, Ren X, Cao B, Liu J, Huo Z, and Tang J 2017 ACS Appl. Mater. & Interfaces 9 32424
[10] Yoo B, Xiao F, Bozhilov K N, Herman J, Ryan M A, and Myung N V 2007 Adv. Mater. 19 296
[11] Gudiksen M S, Lauhon L J, Wang J, Smith D C, and Lieber C M 2002 Nature 415 617
[12] Irrera A, Artoni P, Fioravanti V, Franzò G, Fazio B, Musumeci P, Boninelli S, Impellizzeri G, Terrasi A, Priolo F, and Iacona F 2014 Nanoscale Res. Lett. 9 74
[13] Wu Y Y, Fan R, and Yang P D 2002 Nano Lett. 2 83
[14] Flynn G, Ramasse Q M, and Ryan K M 2016 Nano Lett. 16 374
[15] Yu L W, Alet P J, Picardi G, and Roca I C P 2009 Phys. Rev. Lett. 102 125501
[16] Yu L W, Oudwan M, Moustapha O, Fortuna F, and Roca I C P 2009 Appl. Phys. Lett. 95 113106
[17] Zhao Y L, Ma H G, Dong T G, Wang J Z, Yu L H, Xu J, Shi Y, Chen K J, and Roca I C P 2018 Nano Lett. 18 6931
[18] Zhao Y L, Li L F, Liu S S, Wang J Z, Xu J, Shi Y, Chen K J, Roca I C P, and Yu L W 2020 Nanotechnology 31 145602
[19] Thurmond C D 1953 J. Phys. Chem. 57 827
[20] Kühnle J, Bergmann R B, and Werner J H 1997 J. Cryst. Growth 173 62
[21] Fleurial J P and Borshchevsky A 1990 J. Electrochem. Soc. 137 2928
[22] Dismukes J P, Ekstrom L, and Paff R J 1964 J. Phys. Chem. 68 3021
[23] Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S, and Saraswat K C 2013 Nano Lett. 13 3783
[24] Oehrlein G S, Bestwick T D, Jones P L, Jaso M A, and Lindström J L 1991 J. Electrochem. Soc. 138 1443
Related articles from Frontiers Journals
[1] Yi-Xuan Wang, Qing Yang, Chuang Liu, Guang-Xia Wang, Min Wu, Hao Liu, Yong-Ming Sui, Xin-Yi Yang. Ultrafine Mo-Doped Co$_{2}$P Nanorods Anchored on Reduced Graphene Oxide as Efficient Electrocatalyst for the Hydrogen Evolution Reaction[J]. Chin. Phys. Lett., 2020, 37(5): 066101
[2] Gong Chen, Pan-Shuo Wang. Surface-Induced Enhancement of Piezoelectricity in ZnO Nanowires[J]. Chin. Phys. Lett., 2018, 35(12): 066101
[3] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 066101
[4] T. Hoseinzadeh, M. Ghoranneviss, E. Akbarnejad, Z. Ghorannevis. Growth and Physical Properties of CdS/TiO$_{2}$ Bilayer by Plasma-Based Method[J]. Chin. Phys. Lett., 2018, 35(3): 066101
[5] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 066101
[6] Jun Zheng, Kai Du, Di Xiao, Zheng-Yang Zhou, Wen-Gang Wei, Jin-Jie Chen, Li-Feng Yin, Jian Shen. Synthesis of Ordered Ultra-long Manganite Nanowires via Electrospinning Method[J]. Chin. Phys. Lett., 2016, 33(09): 066101
[7] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 066101
[8] Shehla H., Ali A. Zongo S. Javed I. Ishaq A. Khizar H. Naseem S. Maaza M.. Fabrication of Amorphous Silver Nanowires by Helium Ion Beam Irradiation[J]. Chin. Phys. Lett., 2015, 32(09): 066101
[9] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 066101
[10] WAN Lei, GAO Tao, MA Shi-Jia, LU Peng-Fei, LI Peng. First-Principles Study of Ag-Doped GaAs Nanowires[J]. Chin. Phys. Lett., 2013, 30(6): 066101
[11] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 066101
[12] LV Xiao-Long, ZHANG Xia, YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(12): 066101
[13] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 066101
[14] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 066101
[15] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 066101
Viewed
Full text


Abstract