CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator |
Haiwei Li1†, Shusen Ye1†, Jianfa Zhao2,3,4, Changqing Jin2,3,4, and Yayu Wang1,5* |
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 5Frontier Science Center for Quantum Information, Beijing 100084, China
|
|
Cite this article: |
Haiwei Li, Shusen Ye, Jianfa Zhao et al 2022 Chin. Phys. Lett. 39 017402 |
|
|
Abstract We use scanning tunneling microscopy to study the temperature evolution of electronic structure in Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ parent Mott insulator of cuprates. It is found that the upper Hubbard band moves towards the Fermi energy with increasing temperature, while the charge transfer band remains basically unchanged. This leads to a reduction of the charge transfer gap size at high temperatures, and the rate of reduction is much faster than that of conventional semiconductors. Across the Neel temperature for antiferromagnetic order, there is no sudden change in the electronic structure. These results shed new light on the theoretical models about the parent Mott insulator of cuprates.
|
|
Received: 14 November 2021
Editors' Suggestion
Published: 29 December 2021
|
|
PACS: |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
|
|
|
[1] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[2] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[3] | Hanaguri T, Lupien C, Kohsaka Y et al. 2004 Nature 430 1001 |
[4] | Hoffman J, Hudson E W, Lang K et al. 2002 Science 295 466 |
[5] | Ronning F, Kim C, Feng D et al. 1998 Science 282 2067 |
[6] | Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418 |
[7] | Zhang F C and Rice T 1988 Phys. Rev. B 37 3759 |
[8] | Han X J, Liu Y, Liu Z Y et al. 2016 New J. Phys. 18 103004 |
[9] | Han X J, Chen C, Chen J et al. 2019 Phys. Rev. B 99 245150 |
[10] | Kane C, Lee P, and Read N 1989 Phys. Rev. B 39 6880 |
[11] | Ding W and Si Q 2018 arXiv:1810.03309 [cond-mat.str-el] |
[12] | Falck J P, Levy A, Kastner M A, and Birgeneau R 1992 Phys. Rev. Lett. 69 1109 |
[13] | Kim C, Ronning F, Damascelli A et al. 2002 Phys. Rev. B 65 174516 |
[14] | Choi H, Choi E, and Kim Y 1998 Physica C 304 66 |
[15] | Zenitani Y, Inari K, Sahoda S et al. 1995 Physica C 248 167 |
[16] | Jin C Q, Wu X J, Laffez P et al. 1995 Nature 375 301 |
[17] | Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826 |
[18] | Zhao J F, Cao L P, Li W et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 1 |
[19] | Vaknin D, Miller L, Zarestky J 1997 Phys. Rev. B 56 8351 |
[20] | Ye C, Cai P, Yu R Z et al. 2013 Nat. Commun. 4 1365 |
[21] | Ugeda M M, Bradley A J, Shi S F et al. 2014 Nat. Mater. 13 1091 |
[22] | Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395 |
[23] | Varshni Y P 1967 Physica 34 149 |
[24] | Tohyama T and Maekawa S 2000 Supercond. Sci. Technol. 13 R17 |
[25] | Slater J 1951 Phys. Rev. 82 538 |
[26] | Vecchio I L, Perucchi A, Di Pietro P et al. 2013 Sci. Rep. 3 2990 |
[27] | Vaknin D, Sinha S, Stassis C, Miller L, and Johnston D 1990 Phys. Rev. B 41 1926 |
[28] | Kamra A, Thingstad E, Rastelli G et al. 2019 Phys. Rev. B 100 174407 |
[29] | Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|