|
Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems
Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu
Chin. Phys. Lett. 2022, 39 (1):
010301
.
DOI: 10.1088/0256-307X/39/1/010301
Non-Hermitian materials can exhibit not only exotic energy band structures but also an anomalous velocity induced by non-Hermitian anomalous Berry connection as predicted by the semiclassical equations of motion for Bloch electrons. However, it is unclear how the modified semiclassical dynamics modifies transport phenomena. Here, we theoretically demonstrate the emergence of anomalous oscillations driven by either an external dc or ac electric field, which arise from non-Hermitian anomalous Berry connection. Moreover, it is a well-known fact that geometric structures of electric wave functions can only affect the Hall conductivity. However, we are surprised to find a non-Hermitian anomalous Berry connection induced anomalous linear longitudinal conductivity independent of the scattering time. We also show the emergence of a second-order nonlinear longitudinal conductivity induced by non-Hermitian anomalous Berry connection, violating a well-known fact of its absence in a Hermitian system with symmetric energy spectra. These anomalous phenomena are illustrated in a pseudo-Hermitian system with large non-Hermitian anomalous Berry connection. Finally, we propose a practical scheme to realize the anomalous oscillations in an optical system.
|
|
Electromagnetic Form Factors of $\varLambda$ Hyperon in the Vector Meson Dominance Model and a Possible Explanation of the Near-Threshold Enhancement of the $e^+e^- \to \varLambda\bar{\varLambda}$ Reaction
Zhong-Yi Li, An-Xin Dai, and Ju-Jun Xie
Chin. Phys. Lett. 2022, 39 (1):
011201
.
DOI: 10.1088/0256-307X/39/1/011201
The near-threshold $e^+e^- \to \varLambda\bar{\varLambda}$ reaction is studied with the assumption that the production mechanism is due to a near-$\varLambda \bar{\varLambda}$-threshold bound state. The cross section of the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction is parameterized in terms of the electromagnetic form factors of $\varLambda$ hyperon, which are obtained with the vector meson dominance model. It is shown that the contribution to the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction from a new narrow state with quantum numbers $J^{PC}=1^{--}$ is dominant for energies very close to threshold. The mass of this new state is around 2231 MeV, which is very close to the mass threshold of $\varLambda \bar{\varLambda}$, while its width is just a few MeV. This gives a possible solution to the problem that all previous calculations seriously underestimated the near-threshold total cross section of the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction. We also note that the near-threshold enhancement can also be reproduced by including these well established vector resonances $\omega(1420)$, $\omega(1650)$, $\phi(1680)$, or $\phi(2170)$ with a Flatté form for their total decay width, and a strong coupling to the $\varLambda\bar{\varLambda}$ channel.
|
|
Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction
Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu
Chin. Phys. Lett. 2022, 39 (1):
017401
.
DOI: 10.1088/0256-307X/39/1/017401
We studied anomalous Josephson effect (AJE) in Josephson trijunctions fabricated on Bi$_2$Se$_3$, and found that the AJE in T-shaped trijunctions significantly alters the Majorana phase diagram of the trijunctions, when an in-plane magnetic field is applied parallel to two of the three single junctions. Such a phenomenon in topological insulator-based Josephson trijunction provides unambiguous evidence for the existence of AJE in the system, and may provide an additional knob for controlling the Majorana bound states in the Fu–Kane scheme of topological quantum computation.
|
|
The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques
Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang
Chin. Phys. Lett. 2022, 39 (1):
017501
.
DOI: 10.1088/0256-307X/39/1/017501
The discovery of magnetic skyrmions provides a promising pathway for developing functional spintronic memory and logic devices. Towards the future high-density memory application, nanoscale skyrmions with miniaturized diameters, ideally down to 20 nm are required. Using x-ray magnetic circular dichroism transmission microscopy, nanoscale skyrmions are observed in the [Pt/Co/Ir]$_{15}$ multilayer at room temperature. In particular, small skyrmions with minimum diameters approaching 20 nm could be generated by the current-induced spin-orbit torques. Through implementing material specific parameters, the dynamic process of skyrmion generation is further investigated by performing micromagnetic simulations. According to the simulation results, we find that both the tube-like Néel-type skyrmions and the bobber-like Néel-type skyrmions can be electrically generated. In particular, the size of the bobber-like Néel-type skyrmions can be effectively reduced by the spin-orbit torques, which leads to the formation of 20 nm Néel-type skyrmions. Our findings could be important for understanding the formation dynamics of nanoscale Néel-type spin textures, skyrmions and bobber in particular, which could also be useful for promoting nanoscale skyrmionic memories and logic devices.
|
10 articles
|