Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 017402    DOI: 10.1088/0256-307X/39/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator
Haiwei Li1†, Shusen Ye1†, Jianfa Zhao2,3,4, Changqing Jin2,3,4, and Yayu Wang1,5*
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Haiwei Li, Shusen Ye, Jianfa Zhao et al  2022 Chin. Phys. Lett. 39 017402
Download: PDF(548KB)   PDF(mobile)(627KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use scanning tunneling microscopy to study the temperature evolution of electronic structure in Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ parent Mott insulator of cuprates. It is found that the upper Hubbard band moves towards the Fermi energy with increasing temperature, while the charge transfer band remains basically unchanged. This leads to a reduction of the charge transfer gap size at high temperatures, and the rate of reduction is much faster than that of conventional semiconductors. Across the Neel temperature for antiferromagnetic order, there is no sudden change in the electronic structure. These results shed new light on the theoretical models about the parent Mott insulator of cuprates.
Received: 14 November 2021      Editors' Suggestion Published: 29 December 2021
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/017402       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/017402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiwei Li
Shusen Ye
Jianfa Zhao
Changqing Jin
and Yayu Wang
[1] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[3] Hanaguri T, Lupien C, Kohsaka Y et al. 2004 Nature 430 1001
[4] Hoffman J, Hudson E W, Lang K et al. 2002 Science 295 466
[5] Ronning F, Kim C, Feng D et al. 1998 Science 282 2067
[6] Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418
[7] Zhang F C and Rice T 1988 Phys. Rev. B 37 3759
[8] Han X J, Liu Y, Liu Z Y et al. 2016 New J. Phys. 18 103004
[9] Han X J, Chen C, Chen J et al. 2019 Phys. Rev. B 99 245150
[10] Kane C, Lee P, and Read N 1989 Phys. Rev. B 39 6880
[11] Ding W and Si Q 2018 arXiv:1810.03309 [cond-mat.str-el]
[12] Falck J P, Levy A, Kastner M A, and Birgeneau R 1992 Phys. Rev. Lett. 69 1109
[13] Kim C, Ronning F, Damascelli A et al. 2002 Phys. Rev. B 65 174516
[14] Choi H, Choi E, and Kim Y 1998 Physica C 304 66
[15] Zenitani Y, Inari K, Sahoda S et al. 1995 Physica C 248 167
[16] Jin C Q, Wu X J, Laffez P et al. 1995 Nature 375 301
[17] Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826
[18]Zhao J F, Cao L P, Li W et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 1
[19] Vaknin D, Miller L, Zarestky J 1997 Phys. Rev. B 56 8351
[20] Ye C, Cai P, Yu R Z et al. 2013 Nat. Commun. 4 1365
[21] Ugeda M M, Bradley A J, Shi S F et al. 2014 Nat. Mater. 13 1091
[22] Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395
[23] Varshni Y P 1967 Physica 34 149
[24] Tohyama T and Maekawa S 2000 Supercond. Sci. Technol. 13 R17
[25] Slater J 1951 Phys. Rev. 82 538
[26] Vecchio I L, Perucchi A, Di Pietro P et al. 2013 Sci. Rep. 3 2990
[27] Vaknin D, Sinha S, Stassis C, Miller L, and Johnston D 1990 Phys. Rev. B 41 1926
[28] Kamra A, Thingstad E, Rastelli G et al. 2019 Phys. Rev. B 100 174407
[29] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 017402
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 017402
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 017402
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 017402
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 017402
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 017402
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 017402
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 017402
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 017402
[11] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 017402
[12] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 017402
[13] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 017402
[14] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 017402
[15] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 017402
Viewed
Full text


Abstract