Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 017501    DOI: 10.1088/0256-307X/39/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques
Jiahao Liu1,2,3†, Zidong Wang1,2†, Teng Xu1,2, Hengan Zhou1,2, Le Zhao1,2, Soong-Guen Je4,5, Mi-Young Im4, Liang Fang3, and Wanjun Jiang1,2*
1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
3Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
4Center for X-ray Optics, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
5Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea
Cite this article:   
Jiahao Liu, Zidong Wang, Teng Xu et al  2022 Chin. Phys. Lett. 39 017501
Download: PDF(2307KB)   PDF(mobile)(3568KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The discovery of magnetic skyrmions provides a promising pathway for developing functional spintronic memory and logic devices. Towards the future high-density memory application, nanoscale skyrmions with miniaturized diameters, ideally down to 20 nm are required. Using x-ray magnetic circular dichroism transmission microscopy, nanoscale skyrmions are observed in the [Pt/Co/Ir]$_{15}$ multilayer at room temperature. In particular, small skyrmions with minimum diameters approaching 20 nm could be generated by the current-induced spin-orbit torques. Through implementing material specific parameters, the dynamic process of skyrmion generation is further investigated by performing micromagnetic simulations. According to the simulation results, we find that both the tube-like Néel-type skyrmions and the bobber-like Néel-type skyrmions can be electrically generated. In particular, the size of the bobber-like Néel-type skyrmions can be effectively reduced by the spin-orbit torques, which leads to the formation of 20 nm Néel-type skyrmions. Our findings could be important for understanding the formation dynamics of nanoscale Néel-type spin textures, skyrmions and bobber in particular, which could also be useful for promoting nanoscale skyrmionic memories and logic devices.
Received: 02 November 2021      Express Letter Published: 13 December 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.Tj (Spin-orbit effects)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  12.39.Dc (Skyrmions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/017501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/017501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiahao Liu
Zidong Wang
Teng Xu
Hengan Zhou
Le Zhao
Soong-Guen Je
Mi-Young Im
Liang Fang
and Wanjun Jiang
[1] Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255
[2] Bogdanov A N and Rößler U K 2001 Phys. Rev. Lett. 87 037203
[3] Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031
[4] Zang J et al. 2011 Phys. Rev. Lett. 107 136804
[5] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[6] Koshibae W et al. 2015 Jpn. J. Appl. Phys. 54 053001
[7] Chen G et al. 2015 Appl. Phys. Lett. 106 242404
[8] Braun H B 2012 Adv. Phys. 61 1
[9] Buettner F et al. 2015 Nat. Phys. 11 225
[10] Yang S H et al. 2021 Nat. Rev. Phys. 3 328
[11] Gobel B, Mertig I, and Tretiakov O A 2021 Phys. Rep. 895 1
[12] Back C et al. 2020 J. Phys. D 53 363001
[13] Everschor-Sitte K et al. 2018 J. Appl. Phys. 124 240901
[14] Skyrme T H R 1961 Proc. R. Soc. A 262 237
[15]Bogdanov N Y and Yablonskii D A 1989 Sov. Phys.-JETP 68 101
[16] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[17] Yu X Z et al. 2010 Nature 465 901
[18] Shibata K et al. 2013 Nat. Nanotechnol. 8 723
[19] Ritz R et al. 2013 Nature 497 231
[20] Neubauer A et al. 2009 Phys. Rev. Lett. 102 186602
[21] Pappas C et al. 2009 Phys. Rev. Lett. 102 197202
[22] Tonomura A et al. 2012 Nano Lett. 12 1673
[23] Yu X Z et al. 2013 Nano Lett. 13 3755
[24] Du H F et al. 2014 Nano Lett. 14 2026
[25] Jonietz F et al. 2010 Science 330 1648
[26] Kindervater J et al. 2019 Phys. Rev. X 9 041059
[27] Heinze S et al. 2011 Nat. Phys. 7 713
[28] Romming N et al. 2013 Science 341 636
[29] Emori S et al. 2013 Nat. Mater. 12 611
[30] Boulle O et al. 2016 Nat. Nanotechnol. 11 449
[31] DeRosa M C et al. 2010 Nat. Nanotechnol. 5 91
[32] Pizzini S et al. 2014 Phys. Rev. Lett. 113 047203
[33] Jiang W et al. 2017 Phys. Rep. 704 1
[34] Dupe B et al. 2016 Nat. Commun. 7 11779
[35] Woo S et al. 2016 Nat. Mater. 15 501
[36] Jiang W et al. 2015 Science 349 283
[37] Li W et al. 2019 Adv. Mater. 31 1807683
[38] Moreau-Luchaire C et al. 2016 Nat. Nanotechnol. 11 444
[39] Legrand W et al. 2017 Nano Lett. 17 2703
[40] Jiang W et al. 2019 Phys. Rev. B 99 104402
[41] Pollard S D et al. 2017 Nat. Commun. 8 14761
[42] Soumyanarayanan A et al. 2017 Nat. Mater. 16 898
[43] Raju M et al. 2019 Nat. Commun. 10 696
[44] Guang Y et al. 2020 Nat. Commun. 11 949
[45] Zhou H A et al. 2021 Adv. Funct. Mater. 31 2104426
[46] Caretta L et al. 2018 Nat. Nanotechnol. 13 1154
[47] Fert A, Cros V, and Sampaio J 2013 Nat. Nanotechnol. 8 152
[48] Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190
[49] Iwasaki J, Mochizuki M, and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[50] Sampaio J et al. 2013 Nat. Nanotechnol. 8 839
[51] Ding J J, Yang X F, and Zhu T 2015 J. Phys. D 48 115004
[52] Schulz T et al. 2012 Nat. Phys. 8 301
[53] Wang Z et al. 2020 Nat. Electron. 3 672
[54] Sinova J et al. 2015 Rev. Mod. Phys. 87 1213
[55] Yu G Q et al. 2016 Nano Lett. 16 1981
[56] Tomasello R et al. 2018 Phys. Rev. B 97 060402(R)
[57] Lemesh I et al. 2018 Adv. Mater. 30 1805461
[58]Landau L D and Lifshitz E M 1935 Phys. Z. Sowjetunion 8 153
[59] Buttner F et al. 2017 Nat. Nanotechnol. 12 1040
[60] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[61] Bernand-Mantel A et al. 2020 Phys. Rev. B 101 045416
[62] Zheng F et al. 2018 Nat. Nanotechnol. 13 451
[63] Ran K et al. 2021 Phys. Rev. Lett. 126 017204
[64] Zhu J et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 227511
[65] Gong Z Z et al. 2021 Phys. Rev. B 104 L100412
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017501
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 017501
[3] Huaixiang Wang, Jinghua Song, Weipeng Wang, Yuansha Chen, Xi Shen, Yuan Yao, Junjie Li, Jirong Sun, and Richeng Yu. Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films[J]. Chin. Phys. Lett., 2021, 38(8): 017501
[4] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 017501
[5] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 017501
[6] Li-Peng Jin, Yong-Jun Liu. Magnetization Reversal in Magnetic Bilayer Systems[J]. Chin. Phys. Lett., 2019, 36(6): 017501
[7] Yi Liu, Tao Yu, Zheng-Yong Zhu, Hui-Cai Zhong, Kai-Gui Zhu. Effects of MgO Thickness and Roughness on Perpendicular Magnetic Anisotropy in MgO/CoFeB/Ta Multilayers[J]. Chin. Phys. Lett., 2016, 33(10): 017501
[8] CHENG Ji-Hua, WANG Yin-Gang, XIE Dan. Interface Effects on the Magnetoelectric Properties of Magnetoelectric Multilayer Composites[J]. Chin. Phys. Lett., 2015, 32(01): 017501
[9] LUO Zhi-Yuan, TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan, WANG Jian-Ping. Influence of Film Roughness on the Soft Magnetic Properties of Fe/Ni Multilayers[J]. Chin. Phys. Lett., 2012, 29(12): 017501
[10] LEI Jie-Mei, XU Xiao-Liang, LIU Ling, YIN Nai-Qiang, ZHU Li-Xin. Preparation and Characterization of Bimodal Magnetofluorescent Nanoprobes for Biomedical Application[J]. Chin. Phys. Lett., 2012, 29(9): 017501
[11] ZHOU Guang-Hong, **, ZHU Yu-Fu, LIN Yue-Bin . Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation[J]. Chin. Phys. Lett., 2011, 28(5): 017501
[12] TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan. Structural and Magnetic Properties of [Fe/Ni]N Multilayers[J]. Chin. Phys. Lett., 2010, 27(7): 017501
[13] HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae[J]. Chin. Phys. Lett., 2010, 27(1): 017501
[14] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 017501
[15] LU Ran, FANG Xiao-Yong, KANG Yu-Qing, YUAN Jie, CAO Mao-Sheng. Microwave Absorption and Response Modeling of Nanocomposites Embedded SiC Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(4): 017501
Viewed
Full text


Abstract