Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067301    DOI: 10.1088/0256-307X/36/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric
Wen-Lun Zhang**
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan
Cite this article:   
Wen-Lun Zhang 2019 Chin. Phys. Lett. 36 067301
Download: PDF(694KB)   PDF(mobile)(693KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work details a study based on HfS$_{2}$ transistors utilizing an n-octadecylphosphonic acid-based self-assembled monolayer (SAM) as the gate dielectric. The fabrication of the SAM-based two-dimensional (2D) material transistor is simple and can be used to improve the quality of the interface of air-sensitive 2D materials. In comparison to HfS$_{2}$ transistors utilizing a conventional Al$_{2}$O$_{3}$ gate insulator by atomic layer deposition, HfS$_{2}$ transistors utilizing an SAM as the gate dielectric can reduce the operation region from 4 V to 2 V, enhance the field-effect mobility from 0.03 cm$^{2}$/Vs to 0.75 cm$^{2}$/Vs, improve the sub-threshold swing from 404 mV/dec to 156 mV/dec, and optimize the hysteresis to 0.03 V, thus demonstrating improved quality of the semiconductor/insulator interface.
Received: 21 March 2019      Published: 18 May 2019
PACS:  73.63.Bd (Nanocrystalline materials)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  68.35.Ct (Interface structure and roughness)  
Fund: Supported by the Japan Society for the Promotion of Science under Grant No JP25107004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Lun Zhang
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2]Dennard R H, Gasensslen F H, Yu H, Rideout V L, Bassous E and Leblanc A R 1974 IEEE Trans. Solid-State Circuits SC-9 256
[3]Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[4]Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
[5]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[6]Zhang W, Huang Z, Zhang W and Li Y 2014 Nano Res. 7 1731
[7]Yang J, Kim S, Choi W, Park S H, Jung Y, Cho M and Kim H 2013 ACS Appl. Mater. Interfaces 5 4739
[8]Xu K, Huang Y, Chen B, Xia Y, Lei W, Wang Z, Wang Q, Wang F, Yin L and He J 2016 Small 12 3106
[9]Lee C, Rathi S, Khan M A, Lim D, Kim Y, Yun S J, Youn D, Watanabe K, Taniguchi T and Kim G 2018 Nanotechnology 29 335202
[10]Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A 2014 2D Mater. 1 011002
[11]Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
[12]Klauk H, Zschieschang U, Pflaum J and Halik M 2007 Nature 445 745
[13]Kawanago T and Oda S 2016 Appl. Phys. Lett. 108 041605
[14]Salinas M 2014 Interface Engineering with Self-Assembled Monolayers for Organic Electronics (Erlangen: FAU University Press)
[15]Xu L, Gao N, Zhang Z and Peng L 2018 Appl. Phys. Lett. 113 083105
[16]Xu K, Wang Z, Wang F, Huang Y, Wang F, Yin L, Jiang C and He J 2015 Adv. Mater. 27 7881
Related articles from Frontiers Journals
[1] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 067301
[2] Li-Yan Zhou, Qi Zheng, Li-Hong Bao, Wen-Jie Liang. Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature[J]. Chin. Phys. Lett., 2020, 37(1): 067301
[3] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 067301
[4] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 067301
[5] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 067301
[6] Panagiota KORALLİ, Songül FİAT VAROL, Michael KOMPITSAS, Mihaela GIRTAN. Brightness of Blue/Violet Luminescent Nano-Crystalline AZO and IZO Thin Films with Effect of Layer Number: For High Optical Performance[J]. Chin. Phys. Lett., 2016, 33(05): 067301
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 067301
[8] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 067301
[9] Majid. Farahmandjou. Synthesis of ITO Nanoparticles Prepared by the Degradation of Sulfide Method[J]. Chin. Phys. Lett., 2012, 29(7): 067301
[10] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 067301
[11] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 067301
[12] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 067301
[13] CHENG Jin, , ZOU Xiao-Ping, SONG Wei-Li, CAO Mao-Sheng, SU Yi, YANG Gang-Qiang, , Lü Xue-Ming, ZHANG Fu-Xue,. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction[J]. Chin. Phys. Lett., 2010, 27(5): 067301
[14] SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera, HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(2): 067301
[15] DONG Dong-Qing, LI Lan, ZHANG Xiao-Song, HAN Xu, AN Hai-Ping. Effect of Precursor Molar Ratio of [S2-]/[Zn2+] on Particle Size and Photoluminescence of ZnS:Mn2+ Nanocrystals[J]. Chin. Phys. Lett., 2007, 24(9): 067301
Viewed
Full text


Abstract