CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Slow Vortex Creep Induced by Strong Grain Boundary Pinning in Advanced Ba122 Superconducting Tapes |
Chiheng Dong1, He Huang1,2, Yanwei Ma1,2** |
1Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Chiheng Dong, He Huang, Yanwei Ma 2019 Chin. Phys. Lett. 36 067401 |
|
|
Abstract We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate $S=d\ln(-M)/d\ln(t)$ shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Ba122 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.
|
|
Received: 18 January 2019
Published: 18 May 2019
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51402292 and 51677179, the International Partnership Program of the Chinese Academy of Sciences under Grant Nos GJHZ1775 and 182111KYSB20160014, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No NoQYZDJ-SSW-JSC026, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB25000000. |
|
|
[1] | Yeshurun Y, Malozemoff A P and Shaulov A 1996 Rev. Mod. Phys. 68 911 | [2] | Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J and Crabtree G W 2016 Rep. Prog. Phys. 79 116501 | [3] | Gurevich A 2011 Nat. Mater. 10 255 | [4] | Ma Y 2012 Supercond. Sci. Technol. 25 113001 | [5] | Hosono H, Yamamoto A, Hiramatsu H and Ma Y 2018 Mater. Today 21 278 | [6] | Zhang X, Yao C, Lin H, Cai Y, Chen Z, Li J, Dong C, Zhang Q, Wang D, Ma Y, Oguro H, Awaji S and Watanabe K 2014 Appl. Phys. Lett. 104 202601 | [7] | Huang H, Yao C, Dong C, Zhang X, Wang D, Cheng Z, Li J, Awaji S, Wen H H and Ma Y 2018 Supercond. Sci. Technol. 31 015017 | [8] | Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H and Li J 2015 Sci. Rep. 4 6944 | [9] | Dong C, Lin H, Huang H, Yao C, Zhang X, Wang D, Zhang Q, Ma Y, Awaji S and Watanabe K 2016 J. Appl. Phys. 119 143906 | [10] | Romero-Salazar C, Morales F, Escudero R, Durán A and Hernández-Flores O A 2007 Phys. Rev. B 76 104521 | [11] | Nabia?ek A, Niewczas M, Dabkowska H, Dabkowski A, Castellan J P and Gaulin B D 2003 Phys. Rev. B 67 024518 | [12] | Wang X L, Ghorbani S R, Lee S I, Dou S X, Lin C T, Johansen T H, Müller K H, Cheng Z X, Peleckis G, Shabazi M, Qviller A J, Yurchenko V V, Sun G L and Sun D L 2010 Phys. Rev. B 82 024525 | [13] | Pramanik A K, Aswartham S, Wolter A U B, Wurmehl S, Kataev V and Büchner B 2013 J. Phys.: Condens. Matter 25 495701 | [14] | Gurevich A and Küpfer H 1993 Phys. Rev. B 48 6477 | [15] | Salem-Sugui S, Ghivelder L, Alvarenga A D, Cohen L F, Luo H and Lu X 2011 Phys. Rev. B 84 052510 | [16] | Wen H H, Li S L, Zhao Z W, Jin H, Ni Y M, Kang W N, Kim H J, Choi E M and Lee S I 2001 Phys. Rev. B 64 134505 | [17] | Yeshurun Y, Malozemoff A, Wolfus Y, Yacoby E, Felner I and Tsuei C 1989 Physica C 162 1148 | [18] | Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P, Holtzberg F H, Thompson J R and Kirk M A 1990 Phys. Rev. Lett. 65 1164 | [19] | Eley S, Miura M, Maiorov B and Civale L 2017 Nat. Mater. 16 409 | [20] | Feigel'man M V, Geshkenbein V B and Vinokur V M 1991 Phys. Rev. B 43 6263 | [21] | Malozemoff A P 1991 Physica C 185 264 | [22] | Wen H H, Hoekstra A F T, Griessen R, Yan S L, Fang L and Si M S 1997 Phys. Rev. Lett. 79 1559 | [23] | Wen H H, Li S L, Zhao Z W, Jin H, Ni Y M, Ren Z A, Che G C and Zhao Z X 2001 Physica C 363 170 | [24] | Shen B, Cheng P, Wang Z, Fang L, Ren C, Shan L and Wen H H 2010 Phys. Rev. B 81 014503 | [25] | Feigel'Man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1989 Phys. Rev. Lett. 63 2303 | [26] | Maley M P, Willis J O, Lessure H and McHenry M E 1990 Phys. Rev. B 42 2639 | [27] | Martínez E, Mikheenko P, MartínezL ópez M, Millán A, Bevan A and Abell J S 2007 Phys. Rev. B 75 134515 | [28] | Hecher J, Baumgartner T, Weiss J D, Tarantini C, Yamamoto A, Jiang J, Hellstrom E E, Larbalestier D C and Eisterer M 2016 Supercond. Sci. Technol. 29 025004 | [29] | Yang H, Ren C, Shan L and Wen H H 2008 Phys. Rev. B 78 092504 | [30] | Zhou W, Xing X, Wu W, Zhao H and Shi Z 2016 Sci. Rep. 6 22278 | [31] | Wen H H, Schnack H G, Griessen R, Dam B and Rector J 1995 Physica C 241 353 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|