|
A Three-Terminal Quantum Well Heat Engine with Heat Leakage
Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He
Chin. Phys. Lett. 2019, 36 (6):
060501
.
DOI: 10.1088/0256-307X/36/6/060501
We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are derived in the linear-response regime. The curves of the power output and the efficiency versus the positions of energy levels and the bias voltage are plotted by numerical calculation. Moreover, we obtain the maximum power output and the corresponding efficiency, and analyze the influence of the heat leakage factor, the positions of energy levels and the bias voltage on these performance parameters.
|
|
Nucleonic $^{1}S_{0}$ Superfluidity Induced by a Soft Pion in Neutron Star Matter with Antikaon Condensations
Yan Xu, Qi-Jun Zhi, Yi-Bo Wang, Xiu-Lin Huang, Wen-Bo Ding, Zi Yu, Cheng-Zhi Liu
Chin. Phys. Lett. 2019, 36 (6):
061301
.
DOI: 10.1088/0256-307X/36/6/061301
The nucleonic $^{1}S_{0}$ superfluidity is investigated by solving the gap equation for the Reid soft-core potential as the nucleon–nucleon interaction in neutron star (NS) matter which is considered to be made up of n, p, e, $\mu$ and condensed antikaon matter. We mainly study the influence of the soft pion-induced potential on the nucleonic $^{1}S_{0}$ pairing gaps in the above NS matter. It is found that the intensities of the nucleonic $^{1}S_{0}$ pairing gaps including the soft pion-induced potential are smaller than those calculated in the case of not including the soft pion-induced potential. Furthermore, the nucleonic $^{1}S_{0}$ pairing gaps with the soft pion-induced potential fall into decline with the deepening of the optical potential of antikaons in the above NS matter, whereas they increase with the parameter $\eta$ for the fixed optical potential of antikaons. Due to the appearance of the soft pion-induced potential, the maximum values of nucleonic $^{1}S_{0}$ pairing gaps at parameter $\eta=0.20, 0.55$ are suppressed by 1.7%–6.8% with respect to the case without soft pion-induced potential in the above NS matter.
|
|
Negative Parity States in $^{39}$Cl Configured by Crossing Major Shell Orbits
Long-Chun Tao, Y. Ichikawa, Cen-Xi Yuan, Y. Ishibashi, A. Takamine, A. Gladkov, T. Fujita, K. Asahi, T. Egami, C. Funayama, K. Imamura, Jian-Ling Lou, T. Kawaguchi, S. Kojima, T. Nishizaka, T. Sato, D. Tominaga, Xiao-Fei Yang, H. Yamazaki, Yan-Lin Ye, H. Ueno
Chin. Phys. Lett. 2019, 36 (6):
062101
.
DOI: 10.1088/0256-307X/36/6/062101
Traditional "magic numbers" were once regarded as immutable throughout the nuclear chart. However, unexpected changes were found for unstable nuclei around $N=20$. With both proton and neutron numbers around the magic number of 20, the neutron-rich $^{39}$Cl isotope provides a good test case for the study of the quantum-state evolution across the major shell. In the present work, the negative parity states in $^{39}$Cl are investigated through the $\beta$ decay spectroscopy of $^{39}$S. Newly observed $\gamma$ transitions together with a new state are assigned into the level scheme of $^{39}$Cl. The spin parity of ${5/2}^{-}$ for the lowest negative parity state in $^{39}$Cl is reconfirmed using the combined $\gamma$ transition information. These systematic observations of the negative parity states in $^{39}$Cl allow a comprehensive comparison with the theoretical descriptions. The lowest ${5/2}^{-}$ state in $^{39}$Cl remains exotic in terms of comparisons with existing theoretical calculations and with the neighboring isotopes having similar single-particle configurations. Further experimental and theoretical investigations are suggested.
|
|
High-Power Continuous-Wave and Acousto-Optical Q-Switched Ho:(Sc$_{0.5}$Y$_{0.5}$)$_{2}$SiO$_{5}$ Laser Pumped by Laser Diode
Xiao-Ming Duan, Guang-Peng Chen, Ying-Jie Shen, Li-He Zheng, Liang-Bi Su
Chin. Phys. Lett. 2019, 36 (6):
064201
.
DOI: 10.1088/0256-307X/36/6/064201
We experimentally investigate the continuous-wave (cw) and acousto-optical (AO) Q-switched performance of a diode-pumped Ho:(Sc$_{0.5}$Y$_{0.5})_{2}$SiO$_{5}$ (Ho:SYSO) laser. A fiber-coupled laser diode at 1.91 μm is employed as the pump source. The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0% slope efficiency with respect to the absorbed pump power. In the AO Q-switched regime, at a pulse repetition frequency of 5 kHz, the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width, resulting in a calculated peak power of 100 kW. In addition, at the maximum output level, the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.
|
|
Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe$_{5}$
Min Wu, Hongwei Zhang, Xiangde Zhu, Jianwei Lu, Guolin Zheng, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, Mingliang Tian
Chin. Phys. Lett. 2019, 36 (6):
067201
.
DOI: 10.1088/0256-307X/36/6/067201
We report Shubnikov–de Haas (SdH) oscillations of a three-dimensional (3D) Dirac semimetal candidate of layered material ZrTe$_{5}$ single crystals through contactless electron spin resonance (ESR) measurements with the magnetic field up to 1.4 T. The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field, indicating an anisotropic Fermi surface in ZrTe$_{5}$. Further experiments demonstrate that the ZrTe$_{5}$ single crystals have the signature of massless Dirac fermions with nontrivial $\pi$ Berry phase, key evidence for 3D Dirac/Weyl fermions. Moreover, the onset of quantum oscillation of our ZrTe$_{5}$ crystals revealed by the ESR can be derived down to 0.2 T, much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements. Therefore, ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.
|
|
Full-Quantum Simulation of Graphene Self-Switching Diodes
Ashkan Horri, Rahim Faez
Chin. Phys. Lett. 2019, 36 (6):
067202
.
DOI: 10.1088/0256-307X/36/6/067202
We present a quantum study on the electrical behavior of the self-switching diode (SSD). Our simulation is based on non-equilibrium Green's function formalism along with an atomistic tight-binding model. Using this method, electrical characteristics of devices, such as turn-on voltage, rectification ratio, and differential resistance, are investigated. Also, the effects of geometrical variations on the electrical parameters of SSDs are simulated. The carrier distribution inside the nano-channel is successfully simulated in a two-dimensional model under zero, reverse, and forward bias conditions. The results indicate that the turn-on voltage, rectification ratio, and differential resistance can be optimized by choosing appropriate geometrical parameters.
|
|
Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor
Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou
Chin. Phys. Lett. 2019, 36 (6):
067402
.
DOI: 10.1088/0256-307X/36/6/067402
High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with a $T_{\rm c}$ of 75 K. Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels: the bonding sheet corresponds to a doping level of 0.14, which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped, giving an overall doping level of 0.20 for the sample. Different superconducting gap sizes on the two Fermi surface sheets are revealed. The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet. The maximum gap difference between the two Fermi surface sheets near the antinodal region is $\sim$2 meV. These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity, and the layer-dependent superconductivity in high temperature cuprate superconductors.
|
|
Tunable Perpendicular Magnetic Anisotropy in Off-Stoichiometric Full-Heusler Alloy Co$_{2}$MnAl
Zhi-Feng Yu, Jun Lu, Hai-Long Wang, Xu-Peng Zhao, Da-Hai Wei, Jia-Lin Ma, Si-Wei Mao, Jian-Hua Zhao
Chin. Phys. Lett. 2019, 36 (6):
067502
.
DOI: 10.1088/0256-307X/36/6/067502
Off-stoichiometric full-Heusler alloy Co$_{2}$MnAl thin films with different thicknesses are epitaxially grown on GaAs (001) substrates by molecular-beam epitaxy. The composition of the films, close to Co$_{1.65}$Mn$_{1.35}$Al (CMA), is determined by x-ray photoelectron spectroscopy and energy dispersive spectroscopy. Tunable perpendicular magnetic anisotropy (PMA) from 3.41 Merg/cm$^{3}$ to 1.88 Merg/cm$^{3}$ with the thickness increasing from 10 nm to 30 nm is found, attributed to the relaxation of residual compressive strain. Moreover, comparing with the ultrathin CoFeB/MgO used in the conventional perpendicular magnetic tunnel junction, the CMA electrode has a higher magnetic thermal stability with more volume involved. The PMA in CMA films is sustainable up to 300$^{\circ}\!$C, compatible with semiconductor techniques. This work provides a possibility for the development of perpendicular magnetized full-Heusler compounds with high thermal stability and spin polarization.
|
|
Magnetization Reversal in Magnetic Bilayer Systems
Li-Peng Jin, Yong-Jun Liu
Chin. Phys. Lett. 2019, 36 (6):
067504
.
DOI: 10.1088/0256-307X/36/6/067504
Magnetization reversal in magnetic soft/hard bilayer systems is studied analytically by means of a variational method for magnetic energies in a continuum model. The demagnetization curve is involved with nonlinear equations, and the solution is given implicitly in the form of Jacobi functions, which is valid for the total reversal process. Based on the non-trivial solutions, hysteresis loops, as well as the maximum energy product $(BH)_{\max}$ versus thicknesses of soft/hard layers are obtained. With regard to $(BH)_{\max}$, improvement of the remanence competes with loss of coercive force. As a result, an optimum condition exists. For a given thickness of the hard layer, the optimum condition at which the largest $(BH)_{\max}$ could be achieved is discussed, which is slightly different from previous works.
|
|
Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field
O. Ozturk, E. Ozturk, S. Elagoz
Chin. Phys. Lett. 2019, 36 (6):
067801
.
DOI: 10.1088/0256-307X/36/6/067801
For square-step quantum wells (SSQWs) and graded-step quantum wells (GSQWs), the nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG) coefficients under an intense laser field (ILF) are analyzed. The found results indicate that ILF can ensure a vital influence on the shape and height of the confined potential profile of both SSQWs and GSQWs, and alterations of the dipole moment matrix elements and the energy levels are adhered on the profile of the confined potential. According to the results, the potential profile and height of the GSQWs are affected more significantly by ILF intensity compared to SSQWs. These results indicate that NOR, SHG and THG coefficients of SSQWs and GSQWs may be calibrated in a preferred energy range and the magnitude of the resonance peak (RP) by tuning the ILF parameter. It is feasible to classify blue or red shifts in RP locations of NOR, SHG and THG coefficients by varying the ILF parameter. Our results can be useful in investigating new ways of manipulating the opto-electronic properties of semiconductor QW devices.
|
|
Machine Learning to Instruct Single Crystal Growth by Flux Method
Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding
Chin. Phys. Lett. 2019, 36 (6):
068101
.
DOI: 10.1088/0256-307X/36/6/068101
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning (ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine (SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison, the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.
|
24 articles
|